Определение хпк и бпк сточных вод. Что нужно знать о БПК? Метод определения бпк в сточной воде

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ БИОХИМИЧЕСКОЙ
ПОТРЕБНОСТИ В КИСЛОРОДЕ ПОСЛЕ
n -ДНЕЙ ИНКУБАЦИИ
(БПКполн.) В ПОВЕРХНОСТНЫХ ПРЕСНЫХ, ПОДЗЕМНЫХ
(ГРУНТОВЫХ), ПИТЬЕВЫХ, СТОЧНЫХ И ОЧИЩЕННЫХ
СТОЧНЫХ ВОДАХ.

ПНД Ф 14.1:2:3:4.123-97

Методика допущена для целей государственного
экологического контроля.

Таблица 1


методики при определении растворенного кислорода йодометрическим методом

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d , %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), s R , %

от 0,5 до 5,0 вкл.

св. 5,0 до 100 вкл.

св. 100 до 300 вкл.

Таблица 2

Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости
методики при определении растворенного кислорода амперометрическим методом

Значения показателя точности методики используют при:

Оформлении результатов анализа, выдаваемых лабораторией;

Оценке деятельности лабораторий на качество проведения испытаний;

Оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

3. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, МАТЕРИАЛЫ, РЕАКТИВЫ

Термостат с водяным охлаждением, обеспечивающий постоянную температуру 20 ± 1 °С марки ОН-1125;

*) термометр от 0 до 100 °С 2-го класса точности по ГОСТ 28498 ; *)

весы лабораторные 2 класса точности, ГОСТ 24104 ;

*) весы технические 4-го класса точности, ТУ 25-06-385-77 или аналоги; *)

сушильный электрический шкаф;

холодильник для хранения проб, обеспечивающий температуру 2 ¸ 4 °С;

аппараты для встряхивания типа АВУ-1, АВУ-6п, АВУ-10р ТУ 64-1-1081;

БПК-тестер или оксиметр любой модификации, позволяющий воспроизводить метрологические характеристики, приведенные в таблице ;

мешалка магнитная, ТУ 25-11-834-73;

плитка электрическая, ГОСТ 14919 ;

насос вакуумный любого типа;

аквариумный микрокомпрессор АЭН, ТУ 16-064,011;

аппарат для дистилляции воды, ТУ 64-1-2-2718;

колбы плоскодонные узкогорлые (ГОСТ Р 50222) *) с пришлифованной стеклянной пробкой (конусы по ГОСТ Р 50222) *) вместимостью 250 см 3 , калиброванные с точностью до 0,1 см 3 ;

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

эксикаторы диаметром 140, 190, 250 мм, ГОСТ 25336 ;

вставки для эксикаторов диаметром 128, 175, 230 мм, ГОСТ 9147 ;

мензурки или цилиндры мерные вместимостью 25;

250;

пипетки 2 класса точности вместимостью 10,0;

20,0;

50,0;

колбы конические ТС, ТХС вместимостью 250;

воронки лабораторные В-75-110 ХС;

воронка Бюхнера 1 (2), ГОСТ 9147 ;

трубки хлоркальциевые ТХ-II-1-17(25), ГОСТ 25336 ;

стаканчики для взвешивания (бюксы), ГОСТ 25336 ;

склянки и банки стеклянные с винтовым горлом, с прокладкой и крышкой или с притертой пробкой для отбора и хранения проб и реактивов вместимостью 500; 1000; 1500 *) ; 2000 см 3 , ТУ 6-19-6-70;

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

флаконы и банки цилиндрические полиэтиленовые с навинчивающимися крышками для отбора и хранения проб и реактивов вместимостью 100; 250; 500; 1000; 2000 см 3 , ТУ 6-19-45-74;

бумажные фильтры обеззоленные «синяя лента», ТУ 6-09-1678;

фильтры стеклянные класса ПОР-40, ГОСТ 23336 ;

ткани шелковые (мельничный газ) № 19 - 25, ГОСТ 4403 ;

вода дистиллированная, ГОСТ 6709 ;

крахмал растворимый картофельный, ГОСТ 10163 ;

калий фосфорнокислый двузамещенный 3-водный, ГОСТ 2493 ;

калий двухромовокислый, ГОСТ 4220 *) ;

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

натрия азид;

натрий двууглекислый, ГОСТ 4201 ;

натрий сернистокислый, ГОСТ 195 , стандарт-титр, ТУ 6-09-2540;

железо (III) хлористое 6-водное, ГОСТ 4147 ;

натрий фосфорнокислый двузамещенный 12-водный, ГОСТ 4172 ;

калий фосфорнокислый однозамещенный, ГОСТ 4198 ;

калий гидроокись, ТУ 6-09-5-2322;

кальций хлористый, ГОСТ 4460;

сульфаминовая кислота, ТУ 6-09-2437;

медь сернокислая 5-водная, ГОСТ 4165 ;

магний сернокислый 7-водный, ГОСТ 4523 ;

глютаминовая кислота ч.д.а., ТУ 6-09-07-1091;

Реактивы для определения концентрации растворенного кислорода йодометрическим методом:

марганец хлористый 4-водный, ГОСТ 612 или

марганец сернокислый 5-водный или 7-водный, ГОСТ 435 ;

натрий серноватокислый 5-водный, ГОСТ 27068 , или

стандарт-титр 0,1 моль/дм 3 эквивалента, ТУ 6-09-2540;

натрий хлорноватистый с содержанием активного хлора не менее 3 %, или известь медицинская;

натрий сернокислый, ГОСТ 4166 ;

Все реактивы должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019 .

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004 .

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

Выполнение измерений может производить химик-аналитик, освоивший данную методику.

6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 - 106,7) кПа (630 - 800 мм.рт.ст);

относительная влажность (80 ± 5) %;

напряжение сети (220 ± 10) В;

частота переменного тока (50 ± 1) Гц.

7. ОТБОР И ХРАНЕНИЕ ПРОБ

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» *) .

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

7.1. Подготовка посуды для отбора проб и анализа

Используется полиэтиленовая посуда, а при наличии в воде нефти, углеводородов, моющих средств и пестицидов используются банки из темного стекла.

Посуда для отбора проб и анализа должна быть химически чистой. Она промывается смесью бихромата калия и серной кислоты (хромовой смесью), тщательно водопроводной водой, затем 3 - 4 раза дистиллированной водой. Не разрешается пользоваться поверхностно-активными веществами и органическими растворителями.

Посуду для отбора проб сушат на воздухе, а используемую для анализа, за исключением мерной, сушат в сушильном шкафу при 160 °С в течение 1 часа. Запрещается сушить колбы на колышках. Сосуды для отбора проб должны быть четко промаркированы.

Колбы для инкубации на определение БПК объемом 250 см 3 должны быть откалиброваны с точностью до 0,1 см 3 . Колбу тщательно моют, высушивают (снаружи и изнутри) и взвешивают вместе с пробкой на технических весах с точностью до 0,01 г. Затем наполняют ее дистиллированной водой до краев и закрывают стеклянной пробкой так, чтобы под пробкой не оставалось пузырьков воздуха. Обтирают склянку досуха и снова взвешивают с точностью до 0,01 г.

Разность в весе даст массу воды в объеме склянки, которую для перевода на объем следует разделить при температуре воды 15 °С - на 0,998, при 20 °С - на 0,997 и при 25 °С - на 0,996.

Химически чистая посуда для определения БПК должна храниться с закрытыми стеклянными притертыми пробками или завинчивающимися крышками.

7.2. Отбор проб

7.2.1. Для отбора глубинных проб воды из озер, водохранилищ, прудов и рек следует использовать батометры системы Молчанова, Рутнера или Скадовского-Зернова.

Для отбора проб поверхностных пресных вод с глубины не более 0,5 м используется бутыль с привязанной пробкой, которую помещают в футляр или пробоотборник с грузом. Футляр снабжен петлей, к которой привязывают веревку с размеченными отрезками, указывающими глубину погружения. На требуемой глубине, с помощью привязанной к пробке веревки выдергивают пробку из горла бутыли. После заполнения бутыли водой (на поверхности воды не появляются пузырьки воздуха) ее поднимают на поверхность.

7.2.2. Пробы сточной воды с глубины 0,5 м отбираются пробоотборником любого типа.

7.2.3. Отбор природных и сточных вод следует производить в местах наибольшего перемешивания.

7.2.4. На очистных сооружениях отбирать пробы для анализа на БПК следует до системы хлорирования, т.к. активный хлор является мешающим определению веществом. Если необходимо проанализировать пробу после хлорирования, следует удалить из исследуемой воды свободный хлор (см. раздел ).

7.2.5. При взятии проб измеряют температуру воды. Для этого используют термометр от 0 до 100 °С, 2-го класса точности по ГОСТ 28498 *) . Для определения температуры на месте взятия пробы, 1 дм 3 воды наливают в склянку, нижнюю часть термометра погружают в воду и через 5 мин отсчитывают показания, держа его вместе со склянкой на уровне глаз. Точность определения ± 0,5 °С.

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

7.2.6. Не допускается консервирование проб, предназначенных для определения в них БПК.

7.2.7. Отобранные пробы наливают, предварительно ополаскивая отбираемой водой, в банки или флаконы объемом 1,5 дм 3 , заполняя их до краев и закрыв без пузырей воздуха пришлифованными стеклянными пробками или полиэтиленовыми крышками. Под полиэтиленовые крышки подкладываются тефлоновые или из алюминиевой фольги прокладки. Пробы упаковываются в деревянные ящики для переноски проб и прокладываются бумагой или ветошью.

При транспортировке не держать пробы на свету.

7.2.8. При отборе пробы составляется протокол по утвержденной форме, в котором указывается цель пробоотбора, число, время, место отбора пробы, температура воды, предполагаемые загрязняющие вещества, номер пробы, ФИО отбиравшего. На бутыль наклеивается этикетка с указанием номера пробы, места и даты отбора.

7.3. Хранение проб

Необходимо анализировать пробы тотчас же после отбора. В том случае, если обработать пробу сразу после отбора невозможно, ее следует хранить не более 24 часов при температуре 4 °С.

7.4. Предварительная обработка пробы

БПК определяют в натуральной (взболтанной) пробе при осуществлении экоаналитического контроля за соблюдением нормативов качества.

БПК определяют в отстоянной и фильтрованной пробе при осуществлении производственного контроля за эффективностью технологического процесса очистки сточных вод на разных стадиях.

7.4.1. Определение в натуральной (взболтанной) пробе. В лаборатории перед началом определения проба тщательно перемешивается (с помощью встряхивающего аппарата или вручную).

7.4.2. Определение после отстаивания. Проба отстаивается в цилиндрах в течение 2 часов. Сифоном отбирают в бутыль для анализа верхние 3/4 прозрачного слоя жидкости над осадком, не захватывая взмученный осадок.

7.4.3. Определение в фильтрованной пробе. Проба тщательно перемешивается и фильтруется через обеззоленный фильтр «синяя лента».

7.5. Приготовление разбавляющей воды и растворов

Дистиллированная вода, применяемая для приготовления всех растворов и разбавляющей воды, не должна содержать веществ, влияющих на определение БПК (меди более 0,01 мг/дм 3 , цинка более 1 мг/дм 3 , свободного хлора, хлорамина, органических веществ и кислот). Дистиллированную воду для приготовления разбавляющей воды хранят тщательно защищенной от какого бы то ни было загрязнения при температуре 20 °С. Сосуды для этой воды нельзя использовать для других целей.

7.5.1. Разбавляющую воду готовят из дистиллированной воды, полученной накануне анализа, выдержанной при температуре 20 °С; ее насыщают кислородом воздуха, аэрируя до концентрации растворенного кислорода не менее 8 мг/дм 3 и не более 9 мг/дм 3 . Можно обогащать кислородом воду длительным встряхиванием бутыли, наполненной на 2/3 дистиллированной водой.

В день применения в разбавляющей воде измеряют содержание растворенного O 2 , затем добавляют 0,3 г/дм 3 бикарбоната натрия для доведения рН до оптимальных значений.

рН разбавляющей воды должна быть в диапазоне 7,0 - 8,0.

В разбавляющую воду добавляют фосфорные и аммонийные соли, гексагидрат хлорида железа, хлорид кальция и сульфат магния для создания устойчивой буферной системы, которая позволяет поддерживать постоянное значение рН в течение любого времени инкубации, не изменяющееся при выделении CO 2 (продукт метаболизма бактерий).

7.5.1.1. Растворы солей для приготовления разбавляющей воды.

Фосфатный буферный раствор рН = 7,2.

8,5 г однозамещенного фосфорнокислого калия (KH 2 PO 4 ), 21,75 г двузамещенного фосфорнокислого калия (K 2 HPO 4 ), 33,4 г двузамещенного фосфорнокислого натрия 12-водного (Na 2 HPO 4 × 12Н 2 O) и 1,7 г хлорида аммония (NH 4 Cl) растворяют в дистиллированной воде и доводят объем до 1 дм 3 .

Сульфат магния.

22,5 г MgSO 4 × 7Н 2 O ч.д.а. растворяют в дистиллированной воде, доводят объем до 1 дм 3 .

Хлорид железа.

0,25 г FeCl 3 × 6Н 2 O ч.д.а. растворяют в дистиллированной воде, доводят объем до 1 дм 3 .

Хлорид кальция.

27,5 г СаСl 2 ч.д.а. безводного растворяют в дистиллированной воде, доводят объем до 1 дм 3 .

Растворы хранят в темноте, при комнатной температуре не более месяца. Не используют при появлении осадка.

В день анализа к 1 дм 3 разбавляющей воды прибавляют 1 см 3 фосфатного буферного раствора, 1 см 3 раствора сульфата магния, 1 см 3 раствора хлорида кальция, 1 см 3 раствора хлорида железа.

7.5.1.2. Заражение микрофлорой.

В разбавляющую воду в день анализа добавляют бактериальную затравку. (При анализе сточных вод сооружений биологической очистки такой затравки не требуется). Бактериальную затравку добавляют при исследовании искусственно приготовленных растворов, производственных сточных, олиготрофных поверхностных пресных, грунтовых, глубоко очищенных и обеззараженных сточных вод.

Бактериальная затравка может отбираться из разных источников, при приготовлении разбавляющей воды используется один из предлагаемых вариантов:

а) Сточные воды с городских сооружений биологической очистки, отобранные после песколовок. Добавляют 0,3 - 1,0 см 3 на 1 дм 3 разбавляющей воды.

б) Аквариумная вода. Добавляют 5,0 - 10,0 см 3 на 1 дм 3 разбавляющей воды.

в) Речная вода. Добавляют 10,0 - 20,0 см 3 на 1 дм 3 разбавляющей воды.

7.5.1.3. Подавление нитрифицирующих бактерий.

Наличие нитрификации в поверхностных пресных, биологически очищенных и слабо загрязненных сточных водах может существенно исказить результат определения БПК. Для подавления нитрификации в день анализа в разбавляющую воду добавляют ингибитор - раствор тиомочевины или аллилтиомочевины - так, чтобы концентрация его в разбавляющей воде составляла 0,5 мг/дм 3 , для чего 1 см 3 раствора тиомочевины добавляют на каждый 1 дм 3 разбавляющей воды.

7.5.1.4. Проверка степени чистоты разбавляющей воды холостым опытом.

При определении БПК 5 или БПКполн. четыре кислородные колбы заполняют разбавляющей водой, в двух определяют кислород сразу в день исследования («нулевой» день), время между разбавлением пробы и определением кислорода в «нулевой» день не должно превышать 15 мин. В остальных двух колбах, которые помешают в термостат вместе с анализируемыми пробами, - через 5 суток. Разница средней концентрации кислорода в пробе холостого опыта нулевого дня и через 5-суточный срок инкубации не должна превышать 0,5 мг/дм 3 кислорода.

7.5.2. Приготовление растворов

7.5.2.1. Йодистый калий, 10 %-ный водный раствор.

Навеску 10 г KI помещают в коническую колбу, растворяют в 90 см 3 дистиллированной воды.

7.5.2.2. Серная кислота, водный раствор 1:50.

1 часть концентрированной серной кислоты осторожно добавляют к 50 частям дистиллированной воды, перемешивают.

7.5.2.3. Сульфит натрия, водный раствор 0,025 н.

Раствор сульфита натрия готовят из стандарт-титра разбавлением в четыре раза дистиллированной водой.

7.5.2.4. Тиомочевина, водный раствор.

Навеску 500 мг тиомочевины растворяют в 1 дм 3 дистиллированной воды.

7.5.2.5. Крахмал, 0,5 %-ный водный раствор.

Растирают в ступке 5 г крахмала с небольшим количеством холодной дистиллированной воды. В кипящую дистиллированную воду объемом 1 дм 3 вливают растертый крахмал, постоянно перемешивают при кипячении 3 - 5 минут, затем охлаждают. В охлажденный раствор для консервации прибавляют салициловую кислоту - 1,25 г на 1 дм 3 раствора крахмала или 2 - 3 капли хлороформа. Срок хранения не более 2 недель.

7.5.2.6. Щелочной раствор йодида калия с азидом натрия.

В 700 см 3 дистиллированной воды растворяют 700 г КОН и 150 г KI, отдельно растворяют 10 г NaN 3 в 40 см 3 дистиллированной воды, оба раствора смешивают и доводят объем до 1 дм 3 , если раствор не прозрачен, его отстаивают, а затем сифонируют.

7.5.2.7. Соляная кислота, 0,5 моль/дм 3 раствор.

40 см 3 концентрированной соляной кислоты (d = 1,19) добавляют к 500 см 3 дистиллированной воды и доводят объем до 1 дм 3 .

7.5.2.8. Гидроксид натрия, 0,5 моль/дм 3 раствор.

Навеску 20 г гидроксида натрия растворяют в дистиллированной воде и доводят объем до 1 дм 3 .

7.5.3. Приготовление растворов для определения растворенного кислорода йодометрическим методом

7.5.3.1. Раствор хлорида (сульфата) марганца.

210 г MnCl 2 ·4Н 2 O, или 260 г MnSO 4 × 5Н 2 O, или 290 г MnSO 4 × 7H 2 O растворяют в 300 - 350 см 3 дистиллированной воды, фильтруют в мерную колбу вместимостью 500 см 3 и доливают дистиллированной водой до метки на колбе. Хранят в плотно закрытой склянке.

7.5.3.2. Щелочной раствор йодида калия (или натрия).

15 г KI (или 18 г NaI × 2Н 2 O) растворяют в 20 см 3 , а 50 г NaOH - в 50 см 3 дистиллированной воды. Полученные растворы смешивают в мерной колбе вместимостью 100 см 3 и доводят объем дистиллированной водой до метки на колбе. При наличии мути раствор фильтруют. Хранят в склянке из темного стекла с плотной резиновой пробкой.

340 см 3 концентрированной соляной кислоты добавляют к 170 см 3 дистиллированной воды.

Вместо раствора соляной кислоты можно использовать раствор серной кислоты (1:4). Для его приготовления 100 см 3 концентрированной серной кислоты осторожно при перемешивании добавляют к 400 см 3 дистиллированной воды.

Проверку чистоты растворов соли марганца, йодида калия (или натрия), соляной или серной кислоты и их очистку осуществляют, как описано в п. .

7.5.3.4. Раствор тиосульфата натрия с концентрацией 0,02 моль/дм 3 эквивалента.

При использовании стандарт-титра его растворяют в дистиллированной воде в мерной колбе вместимостью 500 см 3 , затем отбирают 50 см 3 полученного раствора, переносят в мерную колбу вместимостью 500 см 3 и доводят объем дистиллированной воды до метки.

Для приготовления раствора из навески 2,5 г Na 2 S 2 O 3 × 5Н 2 O переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде и доводят объем раствора до метки на колбе. В качестве консерванта к полученному раствору добавляют 3 см 3 хлороформа.

Перед определением точной концентрации раствор выдерживают не менее 5 суток. Хранят в склянке из темного стекла, закрытой пробкой с вставленным в нее сифоном с бюреткой и хлоркальциевой трубкой, заполненной гранулированным КОН или NaOH .

Точную концентрацию раствора тиосульфата натрия определяют по п. не реже 1 раза в неделю.

7.5.3.5. Фторид калия, 40 %-ный раствор.

40 г фторида калия растворяют в 60 см 3 дистиллированной воды. Хранят в полиэтиленовой посуде.

7.5.3.6. Смешанный раствор сульфата и гипохлорита натрия.

50 г сульфата натрия растворяют в 160 см 3 дистиллированной воды и добавляют такое количество раствора гипохлорита натрия, чтобы смешанный раствор содержал около 0,3 % активного хлора. Раствор хранят в темной склянке в холодильнике не более 1 месяца.

При отсутствии готового раствора гипохлорита натрия его готовят из хлорной извести и карбоната натрия следующим образом: 35 г Na 2 СО 3 растворяют в 85 см 3 дистиллированной воды, к 50 г хлорной извести добавляют 85 см 3 дистиллированной воды, тщательно размешивают, добавляют весь раствор карбоната натрия и вновь перемешивают, при этом масса загустевает, затем начинает разжижаться. Массу фильтруют через фильтр «синяя лента» на воронке Бюхнера. Полученный раствор гипохлорита натрия хранят в склянке из темного стекла в холодильнике.

Для определения содержания активного хлора в растворе гипохлорита натрия в коническую колбу вместимостью 250 см 3 вносят 50 см 3 дистиллированной воды, 1 см 3 раствора гипохлорита, 1 г сухого KI, 10 см 3 раствора соляной кислоты (2:1), тщательно перемешивают, выдерживают 5 минут в темном месте и титруют стандартным раствором тиосульфата натрия до появления светло-желтого окрашивания, затем после добавления 1 см 3 раствора крахмала - до полного обесцвечивания.

Концентрацию активного хлора вычисляют по формуле:

С ах = 3,45 × С Т × V Т ,

где С ах - концентрация активного хлора, %;

С Т - концентрация тиосульфата натрия, моль/дм 3 эквивалента;

V Т - объем раствора тиосульфата натрия, пошедший на титрование гипохлорита натрия, см 3 .

7.5.3.7. Смешанный раствор сульфата натрия и роданида калия.

50 г сульфата натрия и 2 г роданида калия растворяют в 200 см 3 дистиллированной воды.

7.5.3.8. Сульфаминовая кислота, 40 %-ный раствор.

4 г сульфаминовой кислоты растворяют в 10 см 3 дистиллированной воды. Хранят в холодильнике.

7.6. Проверка чистоты и очистка используемых реактивов и растворов

7.6.1. Йодид калия (натрия).

Для проверки чистоты йодида калия 1 г KI растворяют в 100 см 3 свежепрокипяченной и охлажденной до комнатной температуры дистиллированной воды, приливают 10 см 3 раствора соляной кислоты (2:1) и 1 см 3 раствора крахмала. Если в течение 5 минут голубая окраска не появляется, реактив пригоден для использования. В противном случае йодид калия должен быть очищен от свободного йода.

Для этого 30 - 40 г KI помещают в воронку Бюхнера и промывают при перемешивании охлажденным до 3 - 5 °С этиловым спиртом до появления бесцветной порции последнего. Промытый КI сушат в темноте между листами фильтровальной бумаги в течение суток. Хранят в плотно закрытой склянке из темного стекла. Проверку чистоты и очистку NaJ проводят аналогичным образом.

7.6.2. Раствор хлорида (сульфата) марганца.

К 100 см 3 свежепрокипяченной и охлажденной дистиллированной воды добавляют 1 см 3 раствора соли марганца, 0,2 г сухого йодида катая (проверенного на чистоту), 5 см 3 раствора соляной кислоты и 1 см 3 раствора крахмала. Отсутствие через 10 мин синей окраски указывает на чистоту реактива. В противном случае для очистки раствора на каждые 100 см 3 его добавляют около 1 г безводного карбоната натрия, хорошо перемешивают, отстаивают в течение суток, а затем фильтруют.

7.6.3. Раствор кислоты.

К 50 см 3 дистиллированной воды добавляют 1 см 3 раствора крахмала, 1 г сухого чистого йодида калия и 10 см 3 раствора соляной (или серной) кислоты. Если в течение 5 мин не появится синяя окраска, кислота может быть использована в анализе, в противном случае следует заменить исходный реактив.

7.7. Определение точной концентрации раствора тиосульфата натрия

В колбу для титрования вносят 80 - 90 см 3 дистиллированной воды, 10 см 3 стандартного раствора бихромата калия, добавляют 1 г сухого KI и 10 см 3 раствора соляной кислоты. Раствор перемешивают, выдерживают 5 мин в темном месте и титруют раствором тиосульфата натрия до появления слабожелтой окраски. Затем добавляют 1 см 3 раствора крахмала и продолжают титрование до исчезновения синей окраски.

Повторяют титрование и, если расхождение между величинами объемов титранта не более 0,05 см 3 , за результат принимают их среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более чем на 0,05 см 3 .

Точную концентрацию раствора тиосульфата натрия находят по формуле:

где С т - концентрация раствора тиосульфата натрия, моль/дм 3 эквивалента;

С д - концентрация раствора бихромата калия, моль/дм 3 эквивалента;

V T - объем раствора тиосульфата натрия, пошедший на титрование, см 3 ;

V д - объем раствора дихромата калия, взятый для титрования, см 3 .

7.8. Устранение мешающих влияний

7.8.1. Перед определением БПК в натуральной пробе воду тщательно перемешивают. Таким образом, предотвращают ошибку, вызванную изменением физических свойств грубодисперсных примесей или выпадением некоторых растворенных веществ в период между отбором пробы и ее обработкой.

7.8.2. Кислые или щелочные исследуемые воды нейтрализуют приготовленными растворами соляной кислоты или гидроксида натрия (до рН 7,0 - 9,0).

К пробе сточных вод прибавляют рассчитанное количество щелочи или кислоты. Требуемое количество определяют титрованием аликвотной части пробы соответствующим раствором.

К пробе для определения БПК добавляют эквивалентное количество раствора сульфита натрия, рассчитанное по результату титрования. Если проба содержит активный хлор, указанную обработку повторяют. Если активный хлор полностью устранен, то пробу используют для определения БПК.

7.8.4. Если анализу подвергается сточная вода, содержащая нитриты (промышленные сточные воды или воды после биохимической очистки), то перед определением БПК нитриты разрушают, добавляя щелочной раствор йодида калия с азидом натрия. Контролируют разрушение нитритов визуально по исчезновению слаборозового окрашивания или с помощью фотоколориметра.

7.8.5. Пробы, содержащие большое количество водорослей или планктона, перед анализом фильтруют через мельничный газ (шелковое сито № 19 - 25). Результаты определения БПК в этих водах будут сомнительными.

8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Основные условия для получения достоверных результатов биохимического потребления кислорода - инкубация пробы при постоянной температуре 20 °С без доступа воздуха и света.

Кроме основных условий при определении необходимо соблюдать следующие правила:

проба должна быть насыщена вначале опыта кислородом (около 8 мг/дм 3 при температуре 20 °С);

потребление кислорода во время инкубационного периода должно быть около 50 % (минимальное потребление 2 мг/дм 3);

остаточная концентрация кислорода после срока инкубации должна быть не менее 3 мг/дм 3 .

8.1. Выполнение измерений без разбавления пробы

Относительно чистые речные и очищенные сточные воды с содержанием БПК 5 до 5 мг/дм 3 можно исследовать без разбавления.

Исследуемую воду наливают в лаборатории в бутыль не более чем на 2/3 объема, устанавливают температуру воды 20 °С (нагреванием на водяной бане или охлаждением) и сильно встряхивают для насыщения кислородом до 8 мг/дм 3 . После этого сифоном исследуемой водой заполняют, слегка переполняя, необходимое количество кислородных колб. При определении БПК 5 наполняется шесть колб, при определении БПК полн. - шестнадцать. Предварительно каждую колбу ополаскивают приблизительно 30 см 3 пробы. Наполненные кислородные колбы закрывают притертой пробкой так, чтобы внутри не оставалось пузырьков воздуха. В двух кислородных колбах тотчас же (не более 15 мин) определяют кислород.

Остальные колбы с испытуемой водой помещают в термостат. Можно применять специальные колбы, снабженные притертыми стеклянными колпачками. В последние наливают испытуемую воду, и они служат водяным затвором. Кислородные колбы хранят при температуре 20 °С в темноте в течение необходимого времени инкубации, (при определении БПК 5 в течение 5 суток, а при определении БПК полн. - до появления в пробе нитритов 0,1 мг/дм 3).

Для анализа пробы на нитриты можно наполнять испытуемой водой дополнительные склянки объемом 25 см 3 и инкубировать их в тех же условиях. Через 2, 5, 7, 10, 15, 20 и 25 суток от начала инкубации вынимают из термостата по две колбы с испытуемой водой, определяют в них растворенный кислород и содержание нитритов.

В расчете используют результат содержания растворенного кислорода в той колбе, где остаточное содержание растворенного кислорода после срока инкубации не менее 3 мг/дм 3 и потреблено около 50 % кислорода. Если это условие выполняется в обеих колбах, вычисляют средний результат из двух колб.

8.2. Выполнение измерений с разбавлением пробы

Для загрязненных речных и сточных вод с БПК 5 выше 6 мг/дм 3 требуется предварительное разбавление пробы.

Определение производят в разбавленной пробе по разности содержания кислорода до и после инкубации в стандартных условиях.

Для разбавления пробы применяют искусственно приготовленную разбавляющую воду (п. ).

При приготовлении разбавлений температура исследуемой пробы должна соответствовать температуре 18 - 20 ° С.

Для расчета необходимых разбавлений пробы следует ожидаемое содержание БПК в пробе разделить на 4 - 5 (поскольку в воде после инкубации при правильном разбавлении должно остаться 4 - 5 мг/дм 3 кислорода). Если нельзя предположить ожидаемое БПК, необходимое разбавление рассчитывается по результатам определения бихроматной окисляемости (ХПК). Условно принимают биохимическое потребление кислорода 50 % ХПК, а поскольку в воде после инкубации должно остаться 4 - 5 мг/дм 3 кислорода, вычисленное значение (ХПК: 2) делят на 4 или 5. Полученный результат показывает, во сколько раз надо разбавить анализируемую воду.

Пробы, для которых нельзя примерно рассчитать величину БПК, берут в двух и более разбавлениях. Результаты, полученные при анализе проб с различным разбавлением, не должны быть одинаковыми. Наиболее достоверным является результат определения, при котором израсходовано около 50 % первоначально содержащегося кислорода.

При определении БПК в воде, содержащей большое количество промышленных сточных вод, могут возрастать значения БПК с увеличением степени разведения. В этих случаях берут максимальное значение БПК, которое получено при наибольшем разведении.

В мерную колбу вместимостью 1 дм 3 наливают хорошо перемешанную испытуемую жидкость, отбирают пипеткой определенный объем и вносят в другую колбу (цилиндром отмеряются объемы больше 50 см 3). Затем доливают до метки разбавляющей водой и хорошо перемешивают; полученную смесь сифоном, опущенным до дна колбы, наливают в шесть (если определяется БПК 5) или 16 (если определяется БПК полн.) кислородные колбы объемом 250 см 3 , закрывают пробкой, следя за тем, чтобы внутри не осталось пузырьков воздуха. Затем оставшейся смесью заполняют колпачки от колб и, наклонив колбу, вставляют их в колпачки с водой, вытесняя из них воду, чтобы не осталось пузырьков воздуха. Для каждого разбавления заполняют две колбы.

В первых двух кислородных колбах немедленно определяют кислород. Все остальные колбы (4 при определении БПК 5 и 10 - 14 при определении БПК полн.) помещают в термостат при 20 °С для инкубации.

Через 2, 5, 7, 10, 15, 20 и 25 суток от начала инкубации вынимают из термостата по две колбы с испытуемой водой, определяют в них растворенный кислород и содержание нитритов. Нитриты определяют в воде, налитой в колпачок колбы, который снимают так же, как надевали.

Если в пробе начался процесс нитрификации, (что определяют по образованию нитритов в концентрации, превышающей 0,1 мг/дм 3) определение БПК полное считают законченным. При появлении на пятые сутки следов нитритов следующее определение проводят через 5 - 8 суток. При отсутствии в лаборатории колб с пришлифованными стеклянными колпачками для контроля процесса нитрификации в термостат можно ставить дополнительно наполненные испытуемой и разбавляющей водой 12 неградуированных склянок объемом 25 см 3 и в них определять содержание нитритов по истечению установленного срока инкубации. Наиболее точным считается определение БПК в пробах, где нитрификация только началась.

9. РАСЧЕТ РЕЗУЛЬТАТОВ ОПРЕДЕЛЕНИЯ БПК n

9.1. Расчет БПК при определении без разбавления пробы:

Х = Сх 1 - Сх 2 ,

где X - величина БПК n , мг/дм 3 кислорода;

Сх 1 - содержание растворенного кислорода до инкубации, мг/дм 3 ;

Сх 2 - то же, после инкубации, мг/дм 3 .

9.2. Расчет БПК при определении с разбавлением пробы:

Х = [(Сх 1 - Сх 2) - (Сy 1 - Сy 2 )]N,

где X - величина БПК, мг O 2 /дм 3 ;

Сх 1 - содержание растворенного кислорода в исследуемой воде до инкубации, мг/дм 3 ;

Сх 2 - то же, после инкубации, мг/дм 3 ;

Сy 1 - содержание растворенного кислорода в разбавляющей воде до инкубации, мг/дм 3 ;

Сy 2 - то же, после инкубации, мг/дм 3 ;

N - величина разбавления.

для которых выполняется следующее условие:

Таблица 3

Таблица 4

Значения пределов повторяемости при определении растворенного

При невыполнении условия () могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6 .

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблицах и .

Таблица 5


кислорода йодометрическим методом (Р = 0,95)

Таблица 6

Значения пределов воспроизводимости при определении растворенного
кислорода амперометрическим методом с БПК-тестером (Р = 0,95)

Принцип метода. Йодометрический метод определения концентрации растворенного кислорода основан на его реакции с гидроксидом марганца (II) и определении образовавшихся более окисленных соединений марганца последующим йодометрическим титрованием. Реактивы и приготовление необходимых растворов по п. и п. .

Определение растворенного кислорода в пробах на БПК, при отсутствии в исследуемой воде восстановителей.

Вынув из колбы с исследуемой водой (объем 250 см 3) притертую пробку, фиксируют растворенный кислород, для чего в колбу вводят отдельными пипетками 2 см 3 раствора хлорида (сульфата) марганца и 2 см 3 щелочного раствора йодида калия. Пипетку погружают каждый раз до половины колбы и по мере выливания раствора поднимают вверх. Затем быстро закрывают колбу стеклянной пробкой таким образом, чтобы в ней не оставалось пузырьков воздуха и содержимое тщательно перемешивают 15 - 20-кратным переворачиванием колбы до равномерного распределения осадка в воде. Из колбы при добавлении реактивов выливается 4 см 3 испытуемой воды, на эту потерю при расчете вводят соответствующую поправку.

Колбы с зафиксированными пробами помещают в темное место для отстаивания (не менее 10 мин и не более 24 ч).

После того, как отстоявшийся осадок будет занимать менее половины высоты колбы, к пробе приливают 10 см 3 раствора соляной кислоты (раствор 2:1), или 4 см 3 раствора серной кислоты (п. ) *) , погружая при этом гашетку до осадка (не взмучивать) и медленно поднимая ее вверх по мере опорожнения. Вытеснение из колбы части прозрачной жидкости для анализа значения не имеет.

Колбу закрывают пробкой и содержимое тщательно перемешивают.

Для титрования используют весь объем воды в калиброванной склянке БПК *) , (пипетку предварительно ополаскивают этим раствором), переносят его в колбу для титрования и титруют стандартным раствором тиосульфата натрия (если предполагаются, что содержание кислорода менее 3 мг/дм 3 - из микробюретки) до тех пор, пока он не станет светло-желтым.

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Затем прибавляют 1 см 3 свежеприготовленного раствора крахмала и продолжают титрование до исчезновения синей окраски.

Обработка результатов измерений.

Массовую концентрацию растворенного в воде кислорода находят по формуле:

где С х - массовая концентрация растворенного кислорода в анализируемой пробе воды, мг/дм 3 ;

C t - концентрация раствора тиосульфата натрия, моль/дм 3 эквивалента;

V t - объем раствора тиосульфата натрия, пошедший на титрование, см 3 ;

V - вместимость кислородной колбы, см 3 ;

V 1 - суммарный объем растворов хлорида марганца и йодида калия, добавленных в колбу при фиксации растворенного кислорода, см 3 ;

8,0 - масса миллиграмм - эквивалента кислорода, мг.

Определение растворенного кислорода в пробах на БПК n в присутствии в исследуемой воде восстановителей.

В присутствии восстановителей последовательность анализа изменяется. В колбу с исследуемой водой добавляют 1 см 3 раствора соляной кислоты и 1 см 3 смешанного раствора гипохлорита и сульфата натрия. Колбу закрывают пробкой, перемешивают и оставляют в темном месте. Через 30 минут для устранения избытка непрореагировавшего гипохлорита добавляют 2 см 3 смешанного раствора роданида калия и сульфата натрия.

Пробу перемешивают и через 10 минут выполняют фиксацию и определение кислорода.

При содержании в анализируемой воде более 1 мг/дм 3 железа в пробу перед добавлением раствора кислоты следует внести 1 см 3 раствора фторида калия. Добавление всех растворов в колбу с пробой осуществляют, погружая пипетку примерно до половины колбы и поднимая ее вверх по мере выливания раствора. В этом случае при определении содержания кислорода вычитают из емкости колбы не 4 см 3 , а сумму объемов всех прибавленных реактивов.

10.2. Определение содержания растворенного кислорода в диапазоне от 0,1 мг/дм 3 до 10,0 мг/дм 3 амперометрическим методом

Принцип метода. Действие преобразователя концентрации кислорода основано на электрохимическом восстановлении кислорода, диффундирующего на его катод через селективнопропускающую мембрану (мембрана непроницаема для воды и растворенных веществ, но пропускает кислород, а также некоторое количество других газов).

Генерируемый при этом электрический ток пропорционален концентрации кислорода в анализируемой воде. Показания стрелки прибора соответствуют массовой концентрации кислорода в анализируемой воде.

Изменения растворимости кислорода при различных температурах и атмосферном давлении пересчитывается по таблицам. Некоторые приборы компенсируют изменения растворимости кислорода в зависимости от температуры и атмосферного давления автоматически.

Для измерения растворенного кислорода при определении БПК пригодны различные модификации БПК-тестеров и оксиметров, позволяющих воспроизводить метрологические характеристики, приведенные в табл. .

Выполнение измерений. Выполняя измерение следует руководствоваться инструкцией по эксплуатации прибора.

При использовании БПК-тестера для инкубирования проб исследуемой воды используются кислородные колбы с тефлоновыми прокладками в крышках и переливную вставку, входящие в комплект. Переливная вставка обеспечивает сбор переливающейся из колбы воды при измерениях растворенного кислорода.

При использовании оксиметров любой марки требуется подобрать кислородные колбы с притертыми пробками, в горлышко которых свободно входит электрохимический датчик кислорода и чашки Петри, которые применяются как переливные подставки.

Кислородную колбу с исследуемой пробой открывают, одевают на нее переливную вставку (если она прикладывается к комплекту) или ставят колбу на чистую чашку Петри, опускают в колбу магнитный стержень в стеклянном корпусе, ставят чашку Петри с кислородной колбой на магнитную мешалку и обеспечивают скорость вращения стержня указанную в инструкции, но не менее 5 см/сек. Вставляют в горло колбы электрохимический датчик кислорода и через 3 минуты записывают показания прибора. Результаты выражаются в мг О 2 /дм 3 с точностью до первого десятичного знака.

После того, как измерение кислорода произведено, датчик кислорода вынимают из кислородной колбы, снимают переливную вставку и из нее или из чашки Петри пипеткой отбирается перелившаяся в процессе измерения исследуемая вода и ею дополняется кислородная колба доверху без пузырей воздуха (если колбу нельзя наполнить доверху перелившейся исследуемой водой, то можно добавлять несколько капель стерильной дистиллированной воды), после чего колба закрывается крышкой и ставится в термостат для дальнейшей инкубации.

Повторное измерение концентрации кислорода в одной и той же колбе повышает достоверность измерений БПК n и позволяет уменьшить количество инкубируемых кислородных колб.

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АНАЛИЗА

Результат анализа X ср в документах, предусматривающих его использование, может быть представлен в виде: Х ср ± D , Р = 0,95,

где D - показатель точности методики.

Значение D рассчитывают по формуле: D = 0,01 × d × Х ср .

Значение d приведено в таблице и .

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: Х ср ± D л , Р = 0,95, при условии D л < D ,

где Х ср - результат анализа, полученный в соответствии с прописью методики;

± D л - значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

Количество результатов параллельных определений, использованных для расчета результата анализа;

Способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

12. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ АНАЛИЗА ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

Оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

12.1. Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

12.1.1. Этот вид контроля предназначен для выявления несоответствия условий выполнения текущих измерений требованиям МВИ.

Оперативный контроль измерительной процедуры применяется в случае получения сомнительных результатов КХА (например, при грубом несоответствии значений ХПК и БПК пробы), а также периодически для проверки разбавляющей воды, чистоты применяемых посуды и реактивов, микробной затравки и самого метода анализа.

12.1.2. Средствами оперативного контроля являются ГСО глюкозоглютаминовой кислоты или приготовленный раствор глюкозоглютаминовой кислоты.

Для приготовления раствора необходимо использовать обезвоженную D (+) глюкозу и L (-) глютаминовую кислоту, для чего эти вещества высушивают в сушильном шкафу при температуре 103 - 105 °С в течение 1 часа. Затем 75 мг глюкозы и 75 мг глютаминовой кислоты растворяют в 0,3 дм 3 дистиллированной воды, перемешивают и доводят до 0,5 дм 3 . Раствор не хранится.

12.1.3. При проведении оперативного контроля 5 см 3 глюкозоглютаминовой смеси доводят до 1 дм 3 разбавляющей водой (п. 8.5.1) *) и проводят определение БПК 5 в этой пробе в точном соответствии с прописью методики.

Результат измеренного БПК 5 умножается па коэффициент разбавления 100, т.к. анализируемая концентрация глюкозоглютаминовой смеси составляет 150 мг/дм 3 *) . Если результат анализа БПК 5 контрольной пробы составляет 205 ± 25 мг/дм 3 , считают условия выполнения измерений соответствующими требованиям МВИ.

*) Внесены дополнения и изменения согласно протокола № 14 заседания НТК ГУАК Госкомэкологии России от 03.12.98 г. и протокола № 23 заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле:

К к = |С ср - С|

где C ср - результат анализа массовой концентрации БПК в образце для контроля - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию () раздела ;

С - аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

К = D л ,

где ± D л - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84 × D , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной при выполнении условия:

К к £ К (2)

При невыполнении условия () контрольную процедуру повторяют. При повторном невыполнении условия () выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

Частное хозяйство и промышленность формируют большое количество сточных вод на планете. Именно поэтому так важны очистительные сооружения для полученных стоков. Благодаря современным методам обработки и дезинфекции загрязненной воды удается снизить уровень угрозы для окружающей среды, который, так или иначе, есть ввиду сброса грязной жидкой среды в водоёмы.

Основными показателями загрязненности вод, в соответствии с которыми подбирается методология очистки, являются расчет и проведение анализа на ХПК (химическое потребление кислорода) и расчет количества БПК (биологическое потребление кислорода) воды. Именно по этим параметрам определяют уровень загрязненности жидкости и стремятся снизить его до регламентируемых СНиП нормативов специально подобранными способами обеззараживания.

Важно: если в сточных водах промышленного или частного хозяйства уровень ХПК и БПК превышен в разы, значит, вода представляет серьезную угрозу для окружающей среды. А поэтому неприятностей с экологической службой не избежать, если не очистить стоки перед сбросом. При этом если даже при обеззараживании воды уровни показателей ХПК и БПК при расчете и проведении анализа не падают, значит, нарушена технология обработки жидкой среды.

При природном самоочищении воды происходят кислородные реакции, которые позволяют окислять органические примеси в воде. Таким образом, происходит их частичный или полный распад. ХПК - это показатель затратности кислорода на окисление различных примесей в составе воды, а БПК - является показателем потребления кислорода на окисление примесей при взаимодействии с бактериальными аэробными препаратами в очистных сооружениях.

Таким образом, повышенный уровень ХПК и БПК при проведении анализа в стоках говорит о том, что воде требуется много кислорода для окисления вредных примесей. А значит, количество этих самых примесей также велико. То есть вода слишком грязная.

Уровни ХПК и БПК измеряют посредством взятия воды на анализ. При этом воду исследуют при определенных температурных показателях в течение конкретного периода времени.

При окислении посредством кислорода в воде уничтожаются такие элементы как сера, водород, углерод, фосфор и прочие химические составляющие, исключая азот, до состояния СО2, Н 2 О, P 2 O 5 , SО3. Кроме того, при участии в окислении кислорода азот преобразуется в аммонийную соль. Стоит отметить, что во время реакции окисления кислород напрямую участвует в реакции, в то время как водород лишь отдает на каждый окисляемый атом вещества по три своих атома. Особенно это касается окисления азота и образования соли аммония.

Важно: Анализ на БПК в воде проводится более длительно от 5 до 20 суток, а анализ на определение ХПК выполняется от 0,3 до 1,4 суток.

Снижение уровней ХПК и БПК


Химические и биологические уровни потребления кислорода в грязной воде снижаются в специальных очистных сооружениях. Принцип очистки воды приблизительно одинаков. Различаются лишь метода воздействия на патогенные микроорганизмы с целью максимального их уничтожения. При этом очистные станции могут различаться по конструкции и размерам в зависимости от количества перерабатываемых стоков и их первичного образования.

Для снижения уровней химического и биологического (биохимического) показателей кислорода в жидкости применяют от 1 до 4 стадий обработки. Таковыми являются:

  • Первичная стадия . Подразумевает под собой механическое отделение крупных частиц мусора и жировых пленок методом фильтрования или отстаивания. Такие способы являются физико-механическими.
  • На вторичной стадии обеззараживания жидкости используют биологические препараты для окисления более мелких, иногда растворенных в воде органических примесей.
  • При третичной обработке воды происходит нейтрализация и удаление солей металлов и других оставшихся мелких частичек примесей. Здесь чаще всего используют химические и физико-химические методы обработки, такие как обратный осмос, электродиализ, адсорбция, флотация и пр.
  • Четвертая стадия обработки воды не является методом снижения уровней ХПК и БПК, однако направлена на выделение (обезвоживание) оставшегося в воде шла а и его последующую утилизацию.

Важно: чаще всего при очистке стоков применяют первые две стадии обработки воды. После этого вода содержит нормальные показатели биологического и химического потребления кислорода. В Европе иногда используют третью стадию очистки жидкости, но исключительно по необходимости.

Отличия между промышленными и бытовыми сточными водами по уровню ХПК и БПК


Стоки делят по типу образования на промышленные и бытовые. Соответственно, первые содержат больше загрязнителей и химических примесей, которые требуют большого количества химического или биологического поглощения кислорода для их очистки. В свою очередь бытовые загрязняются преимущественно органикой, что формирует в разы низший уровень ХПК и БПК в сравнении с промышленной грязной водой.

Важно: если каким-то образом бытовые сточные воды попадают к промышленным, то они являются активаторами биологического и биохимического поглощения кислорода для очистки жидкости одним из биохимических методов. То есть, качество и скорость очистки воды возрастает в разы.

И наоборот, если в бытовые стоки попадают агрессивные вещества типа хлора или же в воду подмешиваются промышленные стоки, то это может показывать высокий уровень ХПК и БПК для бытовой воды.

Важно: химическое потребление кислорода в стоках измеряется в мг/литр. При этом при проведении анализа уровень ХПК всегда будет выше, чем уровень БПК. Поскольку химическое окисление в воде требует больше кислорода, нежели биологическое.

Жесткость

Жесткость воды представляет собой свойство природной воды, зависящее от наличия в ней главным образом растворенных солей кальция и магния. Суммарное содержание этих солей называют общей жесткостью. Общая жесткость подразделяется на карбонатную, обусловленную концентрацией гидрокарбонатов (и карбонатов при рН>8.3) катионов кальция и магния, и некарбонатную - концентрацию в воде кальциевых и магниевых солей сильных кислот. Поскольку при кипячении воды гидрокарбонаты переходят в карбонаты, которые выпадают в осадок, карбонатную жесткость называют временной или устранимой. Остающаяся после кипячения жесткость называется постоянной. Результаты определения жесткости обычно выражают в мг-экв/дм 3 . В естественных условиях ионы кальция, магния и других щелочноземельных металлов, обуславливающих жесткость, поступают в воду в результате взаимодействия растворенного диоксида углерода с карбонатными минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов являются также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий. Жесткость воды колеблется в широких пределах. Вода с жесткостью менее 4 мг-экв/дм 3 cчитается мягкой, от 4 до 8 мг-экв/дм 3 - средней жесткости, от 8 до 12 мг-экв/дм 3 - жесткой и выше 12 мг-экв/дм 3 - очень жесткой. Общая жесткость колеблется от единиц до десятков, иногда сотен мг-экв/дм 3 , причем карбонатная жесткость составляет до 70-80% от общей жесткости . Обычно преобладает (до 70%) жесткость, обусловленная ионами кальция; однако, в отдельных случаях магниевая жесткость может достигать 50-60%. Жесткость морской воды и океанов значительно выше (десятки и сотни мг-экв/дм 3). Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего значения в период половодья.

Окисляемость: перманганатная и бихроматная (ХПК)

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая. Наиболее высокая степень окисления достигается методами бихроматной и иодатной окисляемости воды. Выражается в миллиграммах кислорода, пошедшего на окисление органических веществ, содержащихся в 1 дм 3 воды , . Состав органических веществ в природных водах формируется под влиянием многих факторов. К числу важнейших относятся внутриводоемные биохимические процессы продуцирования и трансформации, поступления из других водных объектов, с поверхностным и подземным стоком, с атмосферными осадками, с промышленными и хозяйственно-бытовыми сточными водами. Образующиеся в водоеме и поступающие в него извне органические вещества весьма разнообразны по своей природе и химическим свойствам, в том числе по устойчивости к действию разных окислителей. Соотношение содержащихся в воде легко- и трудноокисляемых веществ в значительной мере влияет на окисляемость воды в условиях того или иного метода ее определения. В поверхностных водах органические вещества находятся в растворенном, взвешенном и коллоидном состояниях. Последние в рутинном анализе отдельно не учитываются, поэтому различают окисляемость фильтрованных (растворенное органическое вещество) и нефильтрованных (общее содержание органических веществ) проб. Величины окисляемости природных вод изменяются в пределах от долей миллиграммов до десятков миллиграммов в литре в зависимости от общей биологической продуктивности водоемов, степени загрязненности органическими веществами и соединениями биогенных элементов, а также от влияния органических веществ естественного происхождения, поступающих из болот, торфяников и т.п. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными (десятые и сотые доли миллиграмма на 1 дм 3), исключение представляют воды нефтяных месторождений и грунтовые воды, питающиеся за счет болот. Горные реки и озера характеризуются окисляемостью 2-3 мг О 2 /дм 3 , реки равнинные — 5-12 мг О 2 /дм 3 , реки с болотным питанием — десятки миллиграммов на 1 дм 3 .Окисляемость незагрязненных поверхностных вод проявляет довольно отчетливую физико-географическую зональность:

Окисляемость подвержена закономерным сезонным колебаниям. Их характер определяется, с одной стороны, гидрологическим режимом и зависящим от него поступлением органических веществ с водосбора и, с другой,- гидробиологическим режимом. В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК). В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мгО 2 /дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мгО 2 /дм 3 . В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.Для вычисления концентрации углерода, содержащегося в органических веществах значение ХПК (мг/дм 3) умножается на 0.375 (коэффициент, равный отношению количества вещества эквивалента углерода к количеству вещества эквивалента кислорода).

Биохимическое потребление кислорода (БПК)

Степень загрязнения воды органическими соединениями определяют как количество кислорода, необходимое для их окисления микроорганизмами в аэробных условиях. Биохимическое окисление различных веществ происходит с различной скоростью. К легкоокисляющимся ("биологически мягким") веществам относят формальдегид, низшие алифатические спирты, фенол, фурфурол и др. Среднее положение занимают крезолы, нафтолы, ксиленолы, резорцин, пирокатехин, анионоактивные ПАВ и др. Медленно разрушаются "биологически жесткие" вещества гидрохинон, сульфонол, неионогенные ПАВ и др. В лабораторных условиях наряду с БПК полн. определяется БПК 5 - биохимическая потребность в кислороде за 5 суток. В поверхностных водах величины БПК 5 изменяются обычно в пределах 0,5-4 мгO 2 /дм 3 и подвержены сезонным и суточным колебаниям. Oпределение БПК 5 в поверхностных водах используется с целью оценки содержания биохимически окисляемых органических веществ, условий обитания гидробионтов и в качестве интегрального показателя загрязненности воды. Необходимо использовать величины БПК 5 при контролировании эффективности работы очистных сооружений . Сезонные изменения зависят в основном от изменения температуры и от исходной концентрации растворенного кислорода. Влияние температуры сказывается через ее воздействие на скорость процесса потребления, которая увеличивается в 2-3 раза при повышении температуры на 10 o C. Влияние начальной концентрации кислорода на процесс биохимического потребления кислорода связано с тем, что значительная часть микроорганизмов имеет свой кислородный оптимум для развития в целом и для физиологической и биохимической активности. Суточные колебания величин БПК 5 также зависят от исходной концентрации растворенного кислорода, которая может в течение суток изменяться на 2,5 мг/дм 3 в зависимости от соотношения интенсивности процессов его продуцирования и потребления. Весьма значительны изменения величин БПК 5 в зависимости от степени загрязненности водоемов.

Величины БПК 5 в водоемах с различной степенью загрязненности .

Для водоемов, загрязненных преимущественно хозяйственно-бытовыми сточными водами, БПК 5 составляет обычно около 70% БПК полн. . В зависимости от категории водоема величина БПК 5 регламентируется следующим образом: не более 3 мгO 2 /дм 3 для водоемов хозяйственно-питьевого водопользования и не более 6 мгO 2 /дм 3 для водоемов хозяйственно-бытового и культурного водопользования. Для морей (I и II категории рыбохозяйственного водопользования) пятисуточная потребность в кислороде (БПК 5) при 20 о С не должна превышать 2 мгO 2 /дм 3 .

БПК полн.

Полным биохимическим потреблением кислорода (БПК полн.) считается количество кислорода, требуемое для окисления органических примесей до начала процессов нитрификации. Количество кислорода, расходуемое для окисления аммонийного азота до нитритов и нитратов, при определении БПК не учитывается. Для бытовых сточных вод (без существенной примеси производственных) определяют БПК 20 , считая что эта величина близка к БПК полн.Полная биологическая потребность в кислороде БПК полн. для внутренних водоемов рыбохозяйственного назначения (I и II категории) при 20 о С не должна превышать 3 мгO 2 /дм 3 .

Кислород

Растворенный кислород находится в природной воде в виде молекул O 2 . На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее. К первой группе процессов, обогащающих воду кислородом, следует отнести:

  • процесс абсорбции кислорода из атмосферы;
  • выделение кислорода водной растительностью в процессе фотосинтеза;
  • поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.

Абсорбция кислорода из атмосферы происходит на поверхности водного объекта. Скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации. Аэрация - обогащение глубинных слоев воды кислородом - происходит в результате перемешивания водных масс, в том числе ветрового, вертикальной температурной циркуляции и т.д. Фотосинтетическое выделение кислорода происходит при ассимиляции диоксида углерода водной растительностью (прикрепленными, плавающими растениями и фитопланктоном). Процесс фотосинтеза протекает тем сильнее, чем выше температура воды, интенсивность солнечного освещения и больше биогенных (питательных) веществ (P,N и др.) в воде. Продуцирование кислорода происходит в поверхностном слое водоема, глубина которого зависит от прозрачности воды (для каждого водоема и сезона может быть различной - от нескольких сантиметров - до нескольких десятков метров). К группе процессов, уменьшающих содержание кислорода в воде, относятся реакции потребления его на окисление органических веществ: биологическое (дыхание организмов), биохимическое (дыхание бактерий, расход кислорода при разложении органических веществ) и химическое (окисление Fe 2+ , Mn 2+ , NO 2 - , NH 4 + , CH 4 , H 2 S). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению. Кроме того, уменьшение содержания кислорода в воде может происходить вследствие выделения его в атмосферу из поверхностных слоев и только в том случае, если вода при данных температуре и давлении окажется пересыщенной кислородом. В поверхностных водах содержание растворенного кислорода варьирует в широких пределах - от 0 до 14 мг/дм 3 - и подвержено сезонным и суточным колебаниям. Суточные колебания зависят от интенсивности процессов его продуцирования и потребления и могут достигать 2,5 мг/дм 3 растворенного кислорода. В зимний и летний периоды распределение кислорода носит характер стратификации. Дефицит кислорода чаще наблюдается в водных объектах с высокими концентрациями загрязняющих органических веществ и в эвтрофированных водоемах, содержащих большое количество биогенных и гумусовых веществ . Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Кислородный режим оказывает глубокое влияние на жизнь водоема. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мгO 2 /дм 3 . Понижение его до 2 мг/дм 3 вызывает массовую гибель (замор) рыбы. Неблагоприятно сказывается на состоянии водного населения и пересыщение воды кислородом в результате процессов фотосинтеза при недостаточно интенсивном перемешивании слоев воды. В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого и санитарного водопользования содержание растворенного кислорода в пробе, отобранной до 12 часов дня, не должно быть ниже 4 мг/дм 3 в любой период года; для водоемов рыбохозяйственного назначения концентрация растворенного в воде кислорода не должна быть ниже 4 мг/дм 3 в зимний период (при ледоставе) и 6 мг/дм 3 - в летний . Определение кислорода в поверхностных водах включено в программы наблюдений с целью оценки условий обитания гидробионтов, в том числе рыб, а также как косвенная характеристика оценки качества поверхностных вод и регулирования процесса очистки стоков. Она существенна для аэробного дыхания и является индикатором биологической активности (т.е. фотосинтеза) в водоеме.

Уровень загрязненности воды и класс качества . растворенный кислород
лето, мг/дм 3 зима, мг/дм 3 % насыщения
очень чистые, I 9 14-13 95
чистые, II 8 12-11 80
умеренно загрязненные, III 7-6 10-9 70
загрязненные, IV 5-4 5-4 60
грязные, V 3-2 5-1 30
очень грязные, VI 0 0 0

Введение

Вода незагрязненных водоемов в зависимости от температуры (от 30ºС до 0 ºС) содержит 8-14 мг/л кислорода в насыщенном состоянии при атмосферном давлении. Поступающие в водоем вместе со сточными водами бактерии и некоторые химические вещества потребляют для своего окисления растворенный в воде кислород, понижая тем самым содержание его в воде.

При очень низком содержании кислорода жизнедеятельность в водоеме затухает, интенсивность процессов самоочищения снижается, а иногда и почти прекращается. Процесс окисления поступающих в водоем вместе со сточными водами веществ может быть разделен на три стадии, характеризующиеся определенной последовательностью расходования кислорода.

Вначале идет процесс химического окисления легко и трудно окисляющихся соединений, затем биохимическое окисление органических веществ, и, наконец, нитрификация азотсодержащих веществ с образованием солей азотной кислоты.

Если первая стадия (чисто химическое потребление кислорода) не длительна, то вторая (биохимическое окисление), в зависимости от температуры сточной воды и концентрации органических веществ - длится несколько суток. Процесс нитрификации может происходить более продолжительное время (до 40 – 50 суток).

Практическое значение имеет вторая фаза окисления сточных вод, протекающая при участии микроорганизмов в присутствии растворенного в воде свободного кислорода, в результате которой сточная вода приобретает способность не загнивать.

Под влиянием микроорганизмов органическое вещество сточных вод постепенно минерализуется, требуя для своего окисления все меньше кислорода (происходит распад органического вещества).

БПК сточных вод при этом постепенно уменьшается до момента полной минерализации, когда кислород уже не расходуется.

Биохимическое потребление кислорода (БПК) определяется количеством кислорода в мг/л, которое требуется для окисления находящихся в воде органических веществ, что устанавливается по разности в содержании кислорода в момент взятия пробы и спустя определенное время, например 5 суток (БПК ).



При относительно сильном загрязнении воды открытых водоемов может оказаться, что спустя 5 суток в ней совсем не окажется кислорода. Поэтому анализ начинают с того, что исследуемую воду предварительно взбалтывают в продолжении 1 мин в присутствии воздуха для насыщения ее кислородом. Потом определяют растворенный кислород в одной части ее пробы сразу же после взбалтывания, а в другой – спустя 5 суток выстаивания в темном месте при t = 18 – 20ºС.

Полное окисление происходит где-то за 20 суток, но для практических целей обычно определяют БПК через 5 суток и только для более полной качественной характеристики сточной воды в ней определяют БПК и БПК .

Растворенный в воде кислород находят по методу Винклера. Принцип данного метода основан на том, что гидроокись двухвалентного марганца MnO (белый осадок) поглощает свободный кислород, образуя двуокись марганца MnO (бурый осадок).

Осадок растворяют в соляной кислоте. При этом выделяется йод в количестве, эквивалентном содержанию в воде растворенного кислорода. Выделившийся йод оттитровывается раствором гипосульфита (тиосульфата натрия) в присутствии крахмала:

2MnCl + O + 4NaOH = 2MnO + 4NaCl + 2H O;

MnO + 2KI + 4HCl = MnCl + I + 2KCl + 2H O;

I + 2Na S O = Na S O + 2NaI

Цель анализа – провести оценку качества сточной воды по результатам ее анализов на БПК.

Принцип метода анализа основан на определении убыли растворенного в воде кислорода за определенное время (5 или 20 суток).

Реактивы:

Раствор хлористого марганца: 50 г MnCl растворяют в 100 см 3 дистиллированной воды;

Смесь едкого натрия и йодистого калия: 32 г х.ч. гидроокиси натрия растворяют в 100 см 3 воды и затем прибавляют 2 г йодистого калия.

Раствор, подкисленный соляной или серной кислотами, не должен давать синей окраски с крахмалом;

0,02 н. раствор тиосульфата натрия (титр устанавливают по бихромату калия);

0,5%-ный раствор крахмала.

Приборы и материалы:

Склянка с притертой пробкой вместимостью 250 см 3 ;

Пипетка;

Бюретка.

Ход определения

Две одинаковые склянки с притертыми пробками вместимостью 250 см 3 заполняют испытуемой водой и закрывают пробками так, чтобы под ними не было ни одного пузырька воздуха.

В одной пробе содержание кислорода определяют сразу, в другой - через 5 суток. Причем пробу хранят в темноте при комнатной температуре.

В склянку сразу после взятия анализируемой на содержание кислорода пробы, сразу после взятия пробы, вводят пипеткой 1 см 3 раствора хлористого марганца и 3 – 4 см 3 щелочного раствора йодистого калия.

При этом пипетку опускают до дна склянки и постепенно поднимают по мере вытекания из нее реактива. Затем склянку тут же осторожно закрывают пробкой. При этом часть жидкости, эквивалентная объему введенных растворов реактивов, вытесняется. Содержимое склянки перемешивают, переворачивая ее не менее 15 раз. После 10 – минутного отстаивания, когда жидкость над осадком просветлеет, образовавшийся осадок гидроокиси марганца растворяют добавлением 1 см 3 концентрированной серной кислоты. Для полного растворения осадка склянку встряхивают. Затем из нее отбирают в коническую колбу адекватную часть жидкости, равную точно 200 см 3 раствора, и титруют выделившийся йод 0,02 н. раствором тиосульфата натрия. К концу титрования, когда раствор приобретает бледно – желтый цвет, в него добавляют 0,5%-ный раствор крахмала и продолжают титрование до его обесцвечивания. ;

А - содержание растворенного кислорода в воде до инкубации, мг/ дм 3 ;

А - содержание растворенного кислорода в воде после инкубации, мг/ дм 3 .

БИОХИМИЧЕСКОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА В ВОДАХ.
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ СКЛЯНОЧНЫМ
МЕТОДОМ

Ростов-на-Дону
2006

Предисловие

1. РАЗРАБОТАН ГУ «Гидрохимический институт»

2. РАЗРАБОТЧИКИ А.А. Назарова, канд. хим. наук, Ю.А. Андреев

3. СОГЛАСОВАН с Начальником УМЗА и ГУ «ЦКБ ГМП» Росгидромета

5. АТТЕСТОВАН ГУ «Гидрохимический институт», свидетельство об аттестации № 73.24-2005 от 15.06.2005 г.

6. ЗАРЕГИСТРИРОВАН ГУ ЦКБ ГМП за номером РД 52.24.420-2006 от 30.03.2006 г.

Внесен в Федеральный реестр методик выполнения измерений, применяемых в сферах распространения государственного метрологического контроля и надзора за номером ФР. 1.31.2006.02517

7. ВЗАМЕН РД 52.24.420-95 «Методические указания. Методика выполнения измерений биохимического потребления кислорода в водах скляночным методом».

Введение

Находящиеся в воде микроорганизмы в процессе своей жизнедеятельности используют растворенный в воде кислород для биохимического окисления органических соединений, в том числе загрязняющих веществ. Количество кислорода, израсходованное в определенный промежуток времени в процессе биохимического окисления органических веществ, содержащихся в анализируемой воде, называется биохимическим потреблением кислорода (далее - БПК). Этот показатель является некоторой условной мерой загрязнения вод органическими соединениями, в особенности достаточно легко подвергающимися биохимической деградации.

Скорость биодеградации органических загрязняющих веществ зависит от множества факторов. В среднем можно полагать, что при 20 °C за 5 сут. окисляется около 70 % соединений, за 10 и 20 сут. - соответственно 90 % и 99 %. Однако для практических целей полное окисление слишком длительно и его как правило не используют. При неполном окислении органических веществ для сопоставимости величин БПК его определение должно проводиться в некоторых стандартных условиях. В качестве таковых приняты следующие: продолжительность инкубации 5 сут., температура (20 ± 1) °C, отсутствие доступа света и воздуха. Потребление кислорода, определенное при этих условиях называется пятисуточным биохимическим потреблением кислорода (БПК 5). Его находят как разность между содержанием кислорода в анализируемой пробе воды до и после инкубации.

При определении БПК 5 необходимо также соблюдать условия, при которых количество кислорода в пробе в течение инкубации соответствовало бы его потреблению. Это зависит от таких факторов, как степень разбавления проб с большим биохимическим потреблением кислорода, применение одной и той же разбавляющей воды и способ обработки пробы воды. Содержание кислорода в анализируемой исходной или разбавленной пробе должно оставаться в течение всего времени инкубации таким, чтобы были обеспечены хорошие условия для протекания аэробных биохимических процессов. Это будет соблюдено, если анализируемая проба или смесь пробы с разбавляющей водой перед определением будут содержать равновесную с воздухом концентрацию кислорода (около 9 мг/дм 3 при 20 °C), если минимальное потребление кислорода будет не менее 2 мг/дм 3 , а оставшаяся спустя 5 сут. концентрация кислорода - не менее 3 мг/дм 3 .

Величина БПК 5 для водных объектов рыбохозяйственного назначения нормируется (не более 2 мг/дм 3 О 2).

РУКОВОДЯЩИЙ ДОКУМЕНТ

БИОХИМИЧЕСКОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ СКЛЯНОЧНЫМ МЕТОДОМ

Дата введения 2006-04-01

1. Область применения

1.1. Настоящий руководящий документ устанавливает методику выполнения измерений (далее - методика) БПК 5 в пробах поверхностных вод суши и очищенных сточных вод скляночным методом при содержании органических веществ, эквивалентном потреблению кислорода в диапазоне от 1,0 до 11,0 мг/дм 3 . При значении БПК 5 более 6,0 мг/дм 3 определение следует проводить при соответствующем разбавлении пробы.

1.2. Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ поверхностных вод суши и очищенных сточных вод.

2. Нормативные ссылки

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

3. Приписанные характеристики погрешности измерений

3.1. При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице .

Таблица 1 - Диапазон измерений, значения характеристик погрешности и ее составляющих

4.1.4. Пипетки градуированные 2 класса точности исполнения 1, 2 по ГОСТ 29227-91 вместимостью:

1 см 3 - 5 шт.

2 см 3 - 2 шт.

5 см 3 - 1 шт.

4.1.5. Пипетка с одной отметкой 2 класса точности исполнения 1, 2 по ГОСТ 29169-91 вместимостью:

4.1.7. Цилиндры мерные, исполнения 1, 3 по ГОСТ 1770-74 вместимостью:

10 см 3 - 1 шт.

50 см 3 - 1 шт.

100 см 3 - 1 шт.

250 см 3 - 1 шт.

500 см 3 - 1 шт.

1000 см 3 - 1 шт.

4.1.8. Колбы конические исполнения 1, 2 по ГОСТ 25336-82 вместимостью:

4.1.10. Стаканы химические, тип В, исполнения 1, ТХС по ГОСТ 25336-82 вместимостью:

50 см 3 - 1 шт.

100 см 3 - 1 шт.

250 см 3 - 1 шт.

600 см 3 - 1 шт.

1000 см 3 - 1 шт.

4.1.11. Склянки с притертыми пробками (кислородные) для проб воды вместимостью 100 - 250 см 3 (или склянки БПК).

4.1.12. Элемент ЭП1 (трубка хлоркальциевая) по ГОСТ 25336-82 - 1 шт.

4.1.13. Стаканчики для взвешивания (бюксы) СВ-19/9 по ГОСТ 25336-82 - 2 шт.

4.1.14. Воронка лабораторная по ГОСТ 25336-82 диаметром 75 мм - 1 шт.

4.1.15. Колба с тубусом (Бунзена) исполнения 1, 2 по ГОСТ 25336-82 вместимостью 0,25 - 0,5 дм 3 - 1 шт.

4.1.16. Воронка Бюхнера 1 или 2 по ГОСТ 9147-80

4.1.17. Термостат для проб, поддерживающий температуру (20 ± 1) °C.

4.1.18. Насос вакуумный любого типа.

4.1.19. Палочка стеклянная

4.1.20. Флаконы с пробками стеклянные для хранения реактивов вместимостью 100 см 3 , 100 см 3 , 500 см 3 .

4.1.21. Посуда стеклянная и полиэтиленовая для хранения проб и реактивов вместимостью 0,1; 0,25 и 1 дм 3 .

4.1.22. Шпатель (стеклянная лопатка).

4.1.23. Кюветы фотографические или кристаллизатор.

4.1.24. Отрезок гибкой пластиковой трубки длиной 50 - 70 см (сифон).

4.1.25. Микрокомпрессор аквариумный.

4.1.26. Холодильник бытовой.

4.1.27. Шкаф сушильный общелабораторного назначения.

4.1.28. Электроплитка по ГОСТ 14919-83 .

Допускается использование других типов средств измерений, вспомогательных устройств, в том числе импортных, с характеристиками не хуже, чем у приведенных в .

4.2. Реактивы и материалы

При выполнении измерений применяют следующие реактивы и материалы:

4.2.1. Марганец (II) хлористый 4-водный (хлорид марганца) по ГОСТ 612-75 , ч.д.а. или марганец (II) сернокислый 5-водный (сульфат марганца) по ГОСТ 435-77 , ч.д.а. (допустимо ч.).

4.2.2. Калий йодистый (йодид калия) по ГОСТ 4232-74 , ч.д.а. или натрий йодистый 2-водный (йодид натрия) по ГОСТ 8422-76 , ч.д.а.

4.2.18. Вода дистиллированная по ГОСТ 6709-72 , свежепрокипяченная и охлажденная в закрытой склянке до комнатной температуры.

4.2.19. Универсальная индикаторная бумага по ТУ 6-09-1181-77.

4.2.20. Фильтры обеззоленные «белая лента» и «синяя лента» по ТУ 6-09-1678-86.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в .

5. Метод измерений

Определение основано на измерении массовой концентрации растворенного кислорода скляночным методом путем йодометрического титрования в первоначальной или разбавленной пробе воды до и после ее инкубации в течение 5 сут. при стандартных условиях (20 °C, отсутствие доступа воздуха и света).

6. Требования безопасности, охраны окружающей среды

6.1. При выполнении измерений БПК 5 в пробах поверхностных вод суши и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.

6.2. По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007 .

6.3. Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005 .

6.4. Дополнительных требований по экологической безопасности не предъявляется.

7. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее года и освоившие методику.

8. Условия выполнения измерений

8.1. При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

Температура окружающего воздуха (22 ± 5) °C;

Атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);

Влажность воздуха не более 80 % при 25 °C;

Напряжение в сети (220 ± 10) В;

Частота переменного тока в сети питания (50 ± 1) Гц.

9. Отбор и хранение проб

Отбор проб производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592 . Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592 .

Определяемое значение БПК 5 в значительной степени зависит от особенностей химических и биохимических процессов, протекающих в пробе в промежутке времени между ее отбором и началом анализа. Пробы для определения БПК 5 консервировать не допускается. Поэтому пробу необходимо обрабатывать сразу же после отбора, как описано в разделе . Если это невозможно, то отбирают пробу воды в посуду темного стекла, заполняя склянку под горло и хранят при температуре не выше 4 °C не более 4 ч.

10. Подготовка к выполнению измерений

10.1. Приготовление растворов и реактивов

10.1.1. Раствор хлорида (сульфата) марганца

Растворяют 210 г хлорида марганца (М n Сl 2 · 4Н 2 О) или 260 г сульфата марганца (MnSO 4 · 5H 2 O) или 290 г сульфата марганца (MnSO 4 · 7H 2 O) в 300 - 350 см 3 дистиллированной воды, фильтруют в мерную колбу вместимостью 500 см 3 и доливают дистиллированной водой до метки на колбе. Хранят в плотно закрытой склянке.

10.1.2. Щелочной раствор йодида калия (или натрия)

Растворяют 15 г йодида калия или 18 г йодида натрия (NaI · H 2 O) в 20 см 3 , а 50 г гидроксида натрия - в 50 см 3 дистиллированной воды.

Полученные растворы смешивают в мерной колбе вместимостью 100 см 3 и доводят объем дистиллированной водой до метки на колбе. При наличии мути раствор фильтруют. Хранят в склянке из темного стекла с плотной резиновой пробкой.

10.1.3. Раствор соляной кислоты 2:1 (по объему)

К 170 см 3 дистиллированной воды 340 см 3 концентрированной соляной кислоты добавляют.

Вместо раствора соляной кислоты 2:1 (по объему) во всех случаях можно использовать раствор серной кислоты 1:4 (по объему). Для его приготовления 100 см 3 концентрированной серной кислоты добавляют к 400 см 3 дистиллированной воды.

ВНИМАНИЕ! СЕРНУЮ КИСЛОТУ ОТМЕРИВАЮТ СУХИМ ЦИЛИНДРОМ И ОСТОРОЖНО ПРИЛИВАЮТ К ДИСТИЛЛИРОВАННОЙ ВОДЕ НЕБОЛЬШИМИ ПОРЦИЯМИ ПРИ ПЕРЕМЕШИВАНИИ (В ТЕРМОСТОЙКОМ СТАКАНЕ).

Проверку чистоты растворов хлорида марганца, йодида калия (или натрия), соляной (или серной) кислоты и их очистку осуществляют, как описано в .

10.1.4. Раствор крахмала, 0,5 %-ный

Взбалтывают 0,5 г крахмала с 15 - 20 см 3 дистиллированной воды.

Суспензию постепенно приливают к 80 - 85 см кипящей дистиллированной воды и кипятят еще 2 - 3 мин. После охлаждения раствора его консервируют добавлением 2 - 3 капель хлороформа или нескольких кристалликов салициловой кислоты.

Раствор используют до помутнения.

10.1.5. Раствор дихромата калия с молярной концентрацией количества вещества эквивалента (КВЭ) 0,0200 моль/дм 3

При использовании стандарт-титра (см. ) последний переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде и доводят до метки. Затем пипеткой с одной отметкой отбирают 50 см 3 полученного раствора, переносят его в мерную колбу вместимостью 500 см 3 и доводят объем дистиллированной водой до метки.

При отсутствии стандарт-титра для приготовления стандартного раствора взвешивают 0,4904 г дихромата калия, предварительно высушенного в сушильном шкафу при температуре 105 °C в течение 1 - 2 ч, количественно переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде и доводят объем раствора до метки на колбе. Хранят в склянке с притертой пробкой в темном месте не более 6 мес.

10.1.6. Раствор тиосульфата натрия с молярной концентрацией КВЭ 0,02 моль/дм 3

При использовании стандарт-титра (см. ) последний переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде и доводят до метки. Затем пипеткой с одной отметкой отбирают 50 см 3 полученного раствора, переносят его в мерную колбу вместимостью 500 см 3 и доводят объем дистиллированной водой до метки.

Для приготовления стандартного раствора из навески при отсутствии стандарт-титра 2,5 г тиосульфата натрия (Na 2 S 2 O 3 · 5H 2 O) переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде и доводят объем раствора до метки на колбе.

В качестве консерванта к полученному раствору добавляют 3 см 3 хлороформа. Перед определением точной концентрации раствор выдерживают не менее 5 сут. Хранят в склянке из темного стекла, закрытой пробкой с вставленными в нее сифоном с бюреткой и хлоркальциевой трубкой, заполненной гранулированным гидроксидом калия или гидроксидом натрия.

Точную концентрацию стандартного раствора тиосульфата натрия определяют, как описано в не реже 1 раза в неделю. Результаты проверки заносят в специальный журнал.

В 500 см 3 дистиллированной воды растворяют 0,13 г хлорида железа (FeCl 3 · 6H 2 O).

Разбавляющую воду готовят в день применения из дистиллированной воды с температурой 20 °C, добавляя фосфатный буферный раствор, растворы сульфата магния, хлорида кальция и хлорида железа (см. - ) из расчета по 1 см 3 на 1 дм 3 .

Затем насыщают воду кислородом воздуха интенсивным встряхиванием, после чего оставляют на 3 - 5 мин (до исчезновения мелких пузырьков воздуха) для установления равновесия.

Все растворы, необходимые для приготовления разбавляющей воды, хранят до появления в них осадка или до повышения значения БПК разбавляющей воды более 0,5 мг/дм 3 (см. ).

10.1.12. Раствор соляной кислоты, 1 моль/дм 3

К 92 см 3 дистиллированной воды добавляют 8,5 см 3 концентрированной соляной кислоты и перемешивают.

10.1.13. Раствор гидроксида натрия, 1 моль/дм 3

В 100 см 3 дистиллированной воды растворяют 4 г гидроксида натрия. Хранят в полиэтиленовой посуде.

10.2. Проверка чистоты и очистка используемых реактивов и растворов

10.2.1. Йодид калия (натрия)

Для проверки чистоты 1 г йодида калия растворяют в 100 см 3 свежепрокипяченной и охлажденной до комнатной температуры дистиллированной воды, приливают 10 см 3 раствора соляной кислоты, проверенной на чистоту, и 1 см 3 раствора крахмала.

Если в течение 5 мин голубая окраска не появляется, реактив пригоден для использования. В противном случае йодид калия должен быть очищен от свободного йода.

Для этого 30 - 40 г йодида калия помещают в воронку Бюхнера и промывают при перемешивании охлажденным до 3 - 5 °C этиловым спиртом до появления бесцветной порции последнего. Промытый йодид калия сушат в темноте между листами фильтровальной бумаги в течение суток. Хранят в плотно закрытой склянке из темного стекла.

Проверку чистоты и очистку йодида натрия проводят аналогичным образом.

10.2.2. Раствор хлорида (сульфата) марганца

К 100 см 3 свежепрокипяченной и охлажденной дистиллированной воды добавляют 1 см 3 раствора соли марганца, 0,2 г сухого йодида калия, 5 см 3 раствора соляной кислоты, проверенных на чистоту, и 1 см 3 раствора крахмала.

Отсутствие через 10 мин синей окраски указывает на чистоту реактива. В противном случае для очистки раствора на каждые 100 см 3 его добавляют около 1 г безводного карбоната натрия, хорошо перемешивают, отстаивают в течение суток, а затем фильтруют через бумажный фильтр «синяя лента».

10.2.3. Раствор кислоты (соляной или серной)

К 50 см 3 дистиллированной воды добавляют 1 см 3 раствора крахмала, 1 г проверенного на чистоту йодида калия и 10 см 3 раствора соляной кислоты.

Если в течение 5 мин не появится синяя окраска, кислота может быть использована в анализе, в противном случае следует заменить исходный реактив.

10.3. Установление точной вместимости кислородных склянок

Чтобы установить вместимость склянки для определения кислорода, ее тщательно моют, высушивают (снаружи и изнутри) и взвешивают вместе с пробкой с точностью до 0,01 г. Предварительно склянки выдерживают в комнате для взвешивания не менее 30 мин.

Затем наполняют ее дистиллированной водой до краев и закрывают стеклянной пробкой так, чтобы под пробкой не оставалось пузырьков воздуха. Обтирают склянку досуха и снова взвешивают с точностью до 0,01 г. Дистиллированную воду также выдерживают в комнате для взвешивания не менее 30 мин и измеряют ее температуру.

По разности двух взвешиваний рассчитывают массу воды в склянке, которую для перевода в объем следует разделить на коэффициент, равный 0,998 при температуре воды 15 °C, 0,997 - при 20 °C и 0,996 - при 25 °C.

10.4. Определение точной концентрации раствора тиосульфата натрия

В колбу для титрования вносят 80 - 90 см 3 дистиллированной воды, 10 см 3 раствора дихромата калия, 0,0200 моль/дм 3 КВЭ, добавляют 1 г сухого йодида калия и 10 см 3 раствора соляной кислоты. Раствор перемешивают, выдерживают 5 мин в темном месте и титруют раствором тиосульфата натрия до светло-желтой окраски. Затем добавляют 1 см 3 раствора крахмала и продолжают титрование до исчезновения синей окраски. Повторяют титрование и, если расхождение между значениями объемов титранта не более 0,05 см 3 , за результат принимают их среднее.

В противном случае повторяют титрование до получения результатов, отличающихся не более, чем на 0,05 см 3 .

Точную молярную концентрацию КВЭ тиосульфата натрия в растворе рассчитывают по формуле

(2)

где C m - молярная концентрация раствора тиосульфата натрия, моль/дм 3 КВЭ;

C д - молярная концентрация раствора дихромата калия, моль/дм 3 КВЭ;

V т

V д - объем раствора дихромата калия, взятый для титрования, см 3 .

11. Выполнение измерений

11.1. Заполнение и инкубация склянок

Если проба не содержит визуально заметного количества взвешенных веществ, 1,0 - 1,4 дм 3 ее помещают в достаточно большую (2 дм 3) колбу, устанавливают pH в пределах 6 - 8 по универсальной индикаторной бумаге добавлением раствора соляной кислоты или гидроксида натрия 1 моль/дм 3 . Доводят температуру пробы до (20 ± 1) °C, нагревая (при помощи водяной бани) или охлаждая ее (под струей водопроводной воды). Затем энергично взбалтывают пробу не менее 10 мин, чтобы насытить ее кислородом. Насыщение пробы кислородом можно также осуществить, пропуская через нее воздух с помощью аквариумного микрокомпрессора. После завершения процедуры насыщения пробу следует оставить на 3 - 5 мин для удаления избытка воздуха (до отсутствия поднимающихся к поверхности мелких пузырьков).

Если проба содержит грубую взвесь, ее наливают в склянку (лучше, цилиндр) вместимостью не менее 1 дм 3 и отстаивают 0,5 - 1 ч. После отстаивания отбирают сифоном осветлившийся средний слой воды в колбу для насыщения кислородом. Если пробу отстаиванием в течение часа осветлить не удается, ее фильтруют через бумажный фильтр «белая лента». Всегда в результатах анализа следует указывать принятый способ предварительной обработки воды.

Подготовленную пробу наливают в 3 сухие кислородные склянки, заполняя их до края так, чтобы внутри склянки не образовывалось пузырьков. В одной из 3-х склянок сразу же фиксируют и определяют концентрацию растворенного кислорода (см. ). Время между аэрацией пробы и фиксированием кислорода при определении его концентрации не должно быть более 15 мин.

Две другие склянки закрывают, помещают пробками вниз в наполненную дистиллированной водой фотографическую кювету или кристаллизатор (гидрозатвор) и устанавливают в термостат. При использовании склянок БПК колпачок заполняется той же пробой. Склянки выдерживают при отсутствии доступа света в термостате при (20 ± 1) °C в течение 5 сут. По истечении этого срока в инкубированных склянках определяют концентрацию неизрасходованного растворенного кислорода (см. ).

11.2. Определение растворенного кислорода

Сразу же после заполнения склянки (или после инкубации) фиксируют растворенный кислород, для чего в склянку с пробой воды вводят отдельными пипетками 1 см 3 (при вместимости склянки до 150 см 3) или 2 см 3 (при вместимости более 150 см 3) растворахлорида (сульфата) марганца и 1 см 3 или 2 см 3 щелочного раствора йодида калия (при вместимости склянки до 150 см 3 и более 150 см 3 соответственно).

Пипетку погружают каждый раз до половины склянки и поднимают вверх по мере истечения реактива из нее. Затем быстро закрывают склянку стеклянной пробкой таким образом, чтобы в ней не оставалось пузырьков воздуха, и содержимое тщательно перемешивают 15 - 20-кратным переворачиванием склянки до равномерного распределения осадка в воде по всему объему склянки. Склянки с зафиксированным в них кислородом помещают в темное место для отстаивания (на время не менее 10 мин и не более 24 ч).

После того, как опустившийся на дно осадок будет занимать менее половины высоты склянки, к пробе приливают 5 или 10 см 3 (в зависимости от вместимости склянки) раствора соляной кислоты, погружая при этом пипетку до дна склянки к осадку (не взмучивать) и медленно поднимая ее вверх по мере опорожнения. Вытеснение из склянки части прозрачной жидкости для анализа значения не имеет.

Склянку закрывают пробкой, и содержимое тщательно перемешивают. После полного растворения бурого осадка пипеткой с одной отметкой отбирают 50 см 3 раствора, предварительно ополаскивая пипетку этим же раствором, переносят его в колбу для титрования и титруют раствором тиосульфата натрия из бюретки вместимостью 10 см 3 до тех пор, пока он не станет светло-желтым. Затем прибавляют 1 см 3 раствора крахмала и продолжают титрование до исчезновения синей окраски.

В склянках после инкубации, повторяют определение растворенного кислорода, отбирая аликвоту из второй (следующей) склянки.

11.3. Разбавление проб

Если предполагается, что значение БПК 5 будет больше 5 мг/дм 3 , то растворенного кислорода может не хватить для окисления органического вещества пробы. В этом случае исходную пробу разбавляют. Для разбавления используют воду, подготовленную в соответствии с .

В зависимости от предполагаемого значения БПК 5 при разбавлении для выбора объема пробы анализируемой воды руководствуются таблицей .

Объем пробы воды в 1 дм 3 смеси, см 3

Степень разбавления

Для ориентировочной оценки степени разбавления пробы можно использовать значение перманганатной окисляемости, бихроматной окисляемости (ХПК), органолептические (характер и интенсивность запаха пробы) или визуальные показатели (наличие, а также возможный состав взвешенного вещества).

Если значение БПК 5 совершенно неизвестно, следует делать несколько последовательных разбавлений, например 1:1, 1:4, 1:9, то есть в 2, 5, 10 раз, соответственно.

Разбавление пробы следует проводить в мерной колбе вместимостью 1000 см 3 и доливать до метки разбавляющей водой. Точный объем пробы отмеривают пипеткой (до 50 см 3) или цилиндром (более 50 см 3).

Затем поступают в соответствии с

Подготовленные при разбавлении пробы должны иметь температуру (20 ± 1) °C и значение pH 6 - 8.

Если при определении БПК 5 проводили разбавление проб, следует одновременно заполнить 4 кислородные склянки водой для разбавления проб (см. ). В двух из них сразу же определяют концентрацию растворенного кислорода, а две другие помещают в термостат вместе с партией анализируемых проб и определяют в них концентрацию растворенного кислорода после инкубации. Разница средней концентрации кислорода в исходных и инкубированных пробах разбавляющей воды не должна превышать 0,5 мг/дм 3 .

Полученную поправку учитывают при расчете значения БПК 5 (см. ). При более высоком значении БПК 5 разбавляющей воды результаты определения будут недостоверны, и следует заменить воду для разбавления более чистой, повторить отбор проб и определение БПК 5 .

11.4. Подготовка проб при наличии в воде активного хлора

К пробам, подвергавшимся обработке хлором или хлорной известью и содержащим активный хлор, перед началом определения БПК 5 добавляют необходимый для его полного восстановления объем раствора тиосульфата натрия, который определяют следующим образом.

В колбу для титрования вносят 100 см 3 анализируемой воды, 1 г сухого йодида калия, 10 см 3 раствора соляной кислоты, тщательно перемешивают и титруют раствором тиосульфата натрия до светло-желтого цвета, а затем после добавления 1 см 3 раствора крахмала - до полного обесцвечивания.

12. Вычисление и оформление результатов измерений

12.1. Массовую концентрацию растворенного в воде кислорода X , мг/дм 3 , находят по формуле

(3)

где М - молярная масса КВЭ кислорода, равная 8 мг/ммоль.

C т - концентрация раствора тиосульфата натрия, моль/дм 3 КВЭ;

V т - объем раствора тиосульфата натрия, пошедший на титрование, см 3 ;

V - вместимость кислородной склянки, см 3 .

V 1 - суммарный объем растворов хлорида марганца и йодида калия, добавленных в склянку при фиксации растворенного кислорода, см 3 ;

БПК 5 = Х и - Х к или (4)

где Х н - массовая концентрация растворенного кислорода в пробе анализируемой воды (или разбавляющей воды) до инкубации, мг/дм 3 ;

Х к - массовая концентрация растворенного кислорода в пробе анализируемой воды (или разбавляющей воды) после 5 сут. инкубации, мг/дм 3 ;

12.3. Биохимическое потребление кислорода БПК 5 , мг/дм 3 , для подвергавшихся разбавлению проб находят по формуле

(5)

где Х н - концентрация растворенного кислорода в пробе анализируемой воды до инкубации, мг/дм 3 ;

Х к - концентрация растворенного кислорода в пробе анализируемой воды после 5 сут инкубации, мг/ дм 3 ;

Биохимическое потребление кислорода в пробах разбавляющей воды, мг/дм 3 ;

P - степень разбавления пробы, равная 1000/V, где V - объем анализируемой воды в 1 дм 3 смеси после разбавления пробы.

12.4. За результат БПК 5 принимают среднее арифметическое результатов измерения в двух склянках ` X , мг/дм 3 , подвергавшихся инкубации, если расхождение между ними не превышает величины предела повторяемости. В противном случае проводят повторное титрование аликвоты пробы, как описано в . Если и в этом случае расхождение превышает допустимое, результат определения признают недостоверным.

Результат измерения в документах, предусматривающих его использование, представляют в виде:

` Х ± D (Р = 0,95),(6)

где D - границы характеристик погрешности измерения для данной величины БПК 5 , мг/дм 3 (таблица ).

12.5. Допустимо представлять результат в виде:

` X ± D л (Р = 0,95) при условии D л < D ,(7)

где ± D л - границы характеристик погрешности результатов анализа, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений, мг/дм 3 .

Примечание - Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения D л = 0,84 · D с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

12.6. Результаты измерения оформляют протоколом или записью в журнале, по формам, приведенным в Руководстве по качеству лаборатории.

13. Контроль качества результатов измерений при реализации методики в лаборатории

13.1. Общие положения

13.1.1. Контроль качества результатов измерений методики в лаборатории предусматривает:

Контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, погрешности, внутрилабораторной прецизионности).

13.1.2. Периодичность контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по качеству лаборатории.

13.2. Алгоритм оперативного контроля повторяемости

13.2.1. Оперативный контроль повторяемости осуществляют для каждого из результатов измерений, полученных в соответствии с методикой. Для этого отобранную пробу воды делят на две части, и выполняют измерение в соответствии с разделом .

13.2.2. Результат контрольной процедуры r к , мг/дм 3 , рассчитывают по формуле .

14. Проверка приемлемости результатов, получаемых в условиях воспроизводимости

Расхождение между результатами измерений, полученными в двух лабораториях не должно превышать предела воспроизводимости R . При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение R рассчитывают по формуле

R = 2,77 · s R .(11)

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно раздела 5 ГОСТ Р ИСО 5725-6 или МИ 2881 .

Примечание - Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

Федеральная служба по гидрометеорологии и мониторингу
окружающей среды

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
«ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ»

СВИДЕТЕЛЬСТВО № 74.24-2005
об аттестации МВИ

Методика выполнения измерений биохимического потребления кислорода в водах скляночным методом.

разработанная ГУ «Гидрохимический институт» (ГУ ГХИ)

и регламентированная РД 52.24.420-2006

аттестована в соответствии с ГОСТ Р 8.563-96

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке методики выполнения анализа

В результате аттестации установлено, что методика соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

1. Диапазон измеряемых концентраций, значения показателей точности и ее составляющих при доверительной вероятности Р = 0,95

Значения характеристик погрешности и ее составляющих (Р = 0,95)

2. Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности Р = 0,95

3. При реализации методики в лаборатории обеспечивают:

Контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности).

Алгоритм контроля исполнителем процедуры выполнения измерений приведен в РД 52.24.420-2006.

Периодичность контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по качеству лаборатории.