Поиск альтернативных источников энергии в мире. Перспективы использования альтернативных источников энергии. Что будем делать с полученным материалом

Здравствуйте, уважаемые читатели! В этой статьей мы хотели бы поговорить про развитие альтернативных источников энергии в Российской Федерации. Сразу стоит сказать, что различные виды альтернативной энергетики используются в нашей стране достаточно давно. Как минимум, Вы наверное догадались, это ветряные и водяные мельницы, которые на протяжении сотен лет были достаточно популярны в нашей стране для помола зерна и подъёма воды. Сегодня же их заменили ветряки и гидроэлектростанции. Потом ещё также стоит отметить использование примитивных солнечных коллекторов для нагрева воды - в форме тёмных по цвету баков, в которые наливали воду и она нагревалась под воздействием солнечных лучей.

Потенциал альтернативной энергетики в России

Но теперь с приходом прогресса данные архаичные методы «забора» энергии из альтернативных источников сменились на более современные. Сегодня - пусть и достаточно редко - но ветряки всё же встречаются на земле русской. Также широкое распространение во времена Советского Союза получили большие промышленные гидроэлектростанции. Плюс эффективные выпущенные промышленно солнечные коллекторы и солнечные батареи сегодня в меру активно, но всё же устанавливают в солнечных регионах нашей страны. И надо сказать, что потенциал альтернативной энергетики в России ещё далёк до раскрытия. Плюс ещё не стоит забывать, что альтернативная энергетика и экология - это братья навек. То есть развивая альтернативные источники энергии в России, мы одновременно решаем проблемы экологии. Которые для нашей страны актуальны как никогда.

Проблемы альтернативной энергетики в России

Главная проблема заключается в том, что Россия очень богата на минеральные ресурсы. И электричество, которое мы сегодня получаем путём сжигания земных недр - угля, газа и нефти. Поэтому считается, что сегодня не особо выгодно устанавливать достаточно дорогие солнечные панели или, к примеру, ветряки там, где уже проведены линии газа и электроэнергии. Это и есть основные проблемы альтернативной энергетики. И это действительно так. Без существенных налоговых послаблений для пионеров альтернативной энергетики в России достаточно сложно ждать «альтернативного» бума. Как, впрочем, показывает и мировая практика - в странах, где государство идёт навстречу подобным инновациям, процесс более, чем динамичен. Хотя так или иначе использование альтернативных источников электроэнергии - по крайне мере в современном смысле — по карману не всем.

Первый путь развития — принципиальный

Тем не менее всё же можно ожидать роста альтернативной энергетики в России по двум причинам. Во-первых, потому что упор на альтернативные источники энергии - это международная тенденция, которую сложно игнорировать. Ведь это не только большое количество энергии, но и инвестиции в инновационную деятельность, и новые рабочие места. Одним словом, долго игнорировать такой лакомый кусок не получится ни у одного государства. Если это государство стремится быть современным и эффективным, конечно. Однако пока что, увы, традиционные нефть и уголь являются более интересными как с позиции государства, так и с позиции бизнеса. Тем не менее, запасы нефти, угля и газа не бесконечны. И рано или поздно, но и в России придётся сделать нечто такое, что сейчас происходит в США, Китае и Евросоюзе. А там, как пишут наши зарубежные коллеги, количество ветряков, солнечных, геотермальных и приливных электростанций растет не по дням, а по часам. При этом, не забываем, что альтернативная энергетика и экология - идут рука об руку.

Второй путь развития — естественный

Теперь про второй путь развития альтернативной энергетики в России. А именно - про регионы, в которых не всё так гладко с привычным нам электричеством и газом. Речь идёт про труднодоступные населенные пункты севера, который мы так активно стремимся осваивать. И вот если подсчитать, сколько стоит доставка энергоресурсов в некоторые удаленные уголки нашей страны, альтернативная энергетика, развитая прямо на месте, то есть установленная солнечная или ветряная электростанция и прочие альтернативные источники электрической энергии кажутся уже не такими уж и дорогими. Плюс - и большой плюс - повышается автономность населенных пунктов. Они становятся менее зависимы от завоза ресурсов, поскольку начинают вырабатывать их на месте буквально из воздуха. Или из солнца. И примеры таких решений в нашей стране уже имеются .

Также не стоит забывать, что белые пятна без проведенных источников газа или электричества всё же встречаются в России не только на крайнем севере. А даже рядом с крупными городами. Понятно, что речь идёт про дачи. Притом даже если электричество на дачи проведено, чтобы подключить его в свой дом, требуется достаточно много бумажной волокиты. Поэтому вполне себе вариант - установить солнечные батареи на крыше дачного домика. Телевизор, как минимум, питать хватит. Поэтому альтернативная энергетика в Сибири также экономически оправдана. Хотя бы в таких регионах, как Омская область. Где солнечных дней не на много меньше, чем в Краснодаре.

Как дела у мирного атома

Особняком стоят атомные электростанции. С этим источником электроэнергии сначала в Советском Союзе, а потом и в России, всё в порядке. Росатом объявляет о существенных планах по строительству новых и новых станции как на территории России, так и за рубежом.

Атомные электростанции в России активно развиваются. Безусловно, это прекрасный и высокотехнологичный способ получать электроэнергию, поскольку нужно всего лишь немного урана. И можно разместить реактор хоть под землей, хоть в космосе, хоть на борту корабля. Однако это очень опасно. И можно сказать, что в плане общественного мнения - атомные станции в упадке. Стоит лишь вспомнить недавнюю аварию на Фукусиме или знаменитый Чернобыль.

Безусловно, солнечные, ветряные, геотермальные, приливные станции и прочие виды альтернативной энергетики лишены данного недостатка. И предлагают практически неисчерпаемую энергию для всех желающих. Поэтому развитие альтернативных источников энергии идёт большими темпами во всём развитом мире. Посмотрим, куда оно приведёт и нас! Кстати, некоторые авторы утверждают, что если бы в развитие альтернативных источников энергии вложили столько же средств, как в развитие атомной энергетики, к настоящему времени существенную долю энергии мы бы получали от солнца и ветра.

В приводимом ниже видео рассказано о строительстве ветроэлектростанций в Калмыкии:

Альтернативная энергетика в наше время является одним из самых популярных направлений для активной деятельности инновационных компаний и их разработок. В этой сфере ведётся огромное количество исследований, здесь заняты тысячи учёных, работающих в разных странах мира. А как же обстоят дела с альтернативной энергетикой в России? Если вы хотите знать ответ на данный вопрос, тогда эта статья может быть вам интересна.

Прежде чем понять, что представляет собой альтернативная энергетика в России, необходимо разобраться с тем, что называется альтернативной энергетикой. Если говорить кратко, то альтернативная энергетика – это комплекс мер и способов, позволяющих получать энергию, используя для этого возобновляемые ресурсы.

К возобновляемым источникам энергии относится:

  • Солнечная;
  • Энергия вод;
  • Ветровая;
  • Приливная;
  • Геотермальная энергия и многие другие источники энергии.

Ускоренные темпы развития являются характерной чертой для современной альтернативной энергетики во многих странах мира. Причина заключается в попытке снизить зависимость человечества от невозобновляемых источников энергии. Хорошей демонстрацией текущей зависимости человечества от нефти, газа и других подобных ресурсов стало такое известное событие, как нефтяной кризис 1973 года, который во многом способствовал поиску новых решений в сфере альтернативной энергетики.

Что касается положения России, то долгое время она не торопилась вести активные исследования в этой сфере, так как обладает большим количеством невозобновляемых источников энергии. На данный момент Россия обладает опытом в создании электростанций, которые используют в своей работе альтернативные источники энергии. Главной проблемой в этом направлении является отсутствие необходимой поддержки со стороны государства.

Виды альтернативной энергетики

На данный момент существует большое количество видов альтернативной энергетики.

Био

Биомасса (энергоносители растительного происхождения) может быть успешно использована для получения энергии. Важно отметить, что некоторая часть биомассы относится к традиционным источникам энергии (древесина, опилки, стружка и т. д.). Что же касается альтернативных источников энергии, то к понятию «биомасса» относятся растения, сельскохозяйственные отходы. Для сжигания биомассы используются два основных подхода:

  • Использование котлов высокого давления (КПД такого процесса составляет 40–50%);
  • Использование газовых турбин (КПД такого процесса составляет 93%);

Чтобы сжигание биомассы было экономически выгодным, необходимо выполнять её переработку вблизи источников сырья. По той причине, что источником сырья чаще всего выступают фермы и сельскохозяйственные предприятия, большая часть объектов, занимающихся переработкой биомассы, располагается вблизи них. Такой подход позволяет получить довольно большое количество энергии по небольшой цене.

Что касается России, то наиболее подходящими регионами для переработки биомассы являются Черноземье, Краснодарский край, Центральная часть России, Юг Сибири.

Ветровая

Ветер успешно используется для получения энергии. По целому ряду причин, наиболее выгодным местом для размещения ветряков является береговая линия (не меньше чем в 10 км от моря). В случае с Россией, наиболее подходящими местами для размещения ветряных электростанций является прибрежная линия Крайнего Севера, а также Дальний Восток.

Водородная

Альтернативная энергия из водорода может быть получена несколькими методами:

  • Из природного газа;
  • Из лёгкой нефти;
  • Методом разложения воды на составляющие элементы (водород и кислород);
  • Из микроорганизмов;
  • Из ферментов;

Следует отметить, что водородный двигатель по эффективности превосходит стандартный двигатель внутреннего сгорания примерно в 2–3 раза, что делает альтернативную энергию, полученную из водорода, очень перспективным направлением как во всём мире, так и в РФ.

Геотермальная

Геотермальный способ получения альтернативной энергии позволяет использовать тепло земной коры. Использование геотермальной энергетики актуально лишь в определённых местах планеты, где это будет экономически целесообразно. На данный момент больше всего геотермальных электростанций находится на территории Италии, США, Ирландии и Новой Зеландии.

Мировое производство энергии с использованием геотермальных источников составляет 19,3 тыс. МВт. Россия производит порядка 10% все геотермальной энергии мира. Однако геотермальная энергетика в России должна развиваться и дальше, так как её потенциал очень велик. По оценке некоторых экспертов, только Камчатка способна производить порядка 5 тыс. МВт энергии, используя геотермальные источники.

Солнечная

Солнечная энергетика является одним из самых перспективных направлений, так как Солнце – это мощнейший источник энергии, который способен полностью решить все энергетические проблемы нашей планеты. Кроме того, солнечная энергетика является полностью «зелёной», она не причиняет никакого вреда экологии.

На данный момент солнечная энергия производится во многих страна с использованием специальных фотоэлементов. Они устанавливаются на крышах зданий, солнечные батареи установлены на космических объектах. Специальные гелиостанции устанавливаются в местах с большим количеством солнечных дней.

Одной из основных проблем солнечной энергетики является низкий КПД используемых фотоэлементов, который в лучшем случае достигает 23%. Это не касается солнечных батарей, развернутых в космосе: от них КПД очень высок. Среди других недостатков также следует отметить непостоянный объём производства энергии, а также необходимость большого количества свободной территории для установки фотоэлементов.

В Российской Федерации лучшими местами для строительства гелиостанций являются Краснодарский край, Кубань, Приморье и Восточная Сибирь.

Термоядерная

Одним из самых многообещающих направлений в альтернативной энергетике является контролируемый термоядерный синтез, при помощи которого может быть полностью решена энергетическая проблема не только конкретных стран, но и всего человечества.

Среди главных преимуществ термоядерной энергетики нельзя не отметить:

  • Неиссякаемые источники;
  • Экологическую безопасность;
  • Экономическую эффективность.

На данный момент ещё не удалось создать станций термоядерного синтеза, которые были бы экономически выгодными. Однако в этом направлении ведутся активные работы.

У истоков контролируемого термоядерного синтеза стоят известные учёные Илья Тамм, Игорь Курчатов и Андрей Сахаров. Первые исследования в этом направлении начали вестись ещё в 1950-е годы в СССР.

Одним из самых перспективных проектов в этом направлении является международный проект ITER, который должен дать первые серьёзные результаты, по прогнозам, в 2040–2050-е годы. Россия, как и многие другие страны, является участником этой программы.

Состояние альтернативной энергетики в России

В 90-е годы, в связи с определёнными событиями (распад СССР), многие программы по исследованиям в сфере альтернативной энергетики были частично или полностью прекращены. Затем были попытки вновь начать исследования в этом направлении, и даже определились регионы Российской Федерации, в которых развитие данной сферы особенно перспективно. Но несмотря на это в 2000-е годы исследования в этой сфере были практически прекращены.

Одной из причин прекращения работы в данной сфере стала высокая цена на нефть, что, в свою очередь, отбило желание у государства вкладывать средства в поиски новых способов получения энергии.

Достижения России в альтернативной энергетике

На данный момент исследования в направлении «зеленой» энергетики в России практически не ведутся, однако государство имеет определённые достижения в этой сфере.

Среди таких достижений можно отметить наличие целого ряда ветряных электростанций, а также наличие геотермальных станций.

Развитие солнечной энергетики в России также даёт свои определённые плоды, на территории страны работает несколько солнечных станций. Определённое развитие получила и приливная энергетика.

Проблемы

Одной из главных проблем для всех занимающихся альтернативной энергетикой в России является отсутствие господдержки, а также отсутствие нормативно-правовой базы для этого рода деятельности.

Среди других проблем следует отметить отсутствие выгоды от вложений в эту сферу, а также неконкурентоспособность электростанций, использующих альтернативные источники энергии, по сравнению с использующими традиционные.

Следует отметить, что в период с 2000 до 2010 год процент использования возобновляемых источников в российском энергетическом балансе увеличился. Однако причиной этого стало большее использование традиционно возобновляемых источников – таких, как отходы деревообрабатывающей промышленности.

Ещё одним серьёзным недостатком является отсутствие необходимой инфраструктуры для развития альтернативной энергетики, а также недостаток кадров, способных работать в этом направлении, особенно высококвалифицированных. Причины этого заключаются в том, что инвестиции в эту сферу пока что невыгодны, поэтому их практически нет. Даже несмотря на то, что альтернативные источники энергии в России имеются в большом достатке. Данную проблему способна решить господдержка, хотя бы на ранних стадиях проектов, пока они не достигнут окупаемости.

Время не стоит на месте. В глубокой древности люди использовали как источник энергии только собственные силы, или, по возможности, силы домашних животных. Потом первым внешним источником энергии, который научились использовать люди, был огонь. Все, что вначале умели получить от огня, это приготовление еды и обогрев своего жилища. Сегодня на службе у человечества находятся источники энергии, которые превышают человеческую силу в миллионы раз. Сейчас мы готовим еду не только с помощью огня, специальной техникой поднимаем тонны грузов, используя ракеты, покоряем космос, заглядываем в глубины Земли и строим миллионы городов. Тем не менее, в мире все чаще возникают локальные энергетические кризисы, связанные с недостатком энергетических ресурсов.

Закон энергии

Энергия никогда не исчезает, она может менять форму и накапливаться. Например, растения нуждаются в солнечном свете, они превращают солнечную энергию и накапливают ее. Вместе с тем, они отдают ее нам в виде съедобных продуктов, люди и животные потребляют эти растения и превращают эту энергию, которая в них накапливается, например, в мышечную работу. С другой стороны, при сжигании дров на костре также освобождается энергия, происходящая от Солнца. Кроме того, все ископаемые ресурсы планеты, прежде всего уголь, природный газ, нефть являются накопителями солнечной энергии. Все эти топливно-энергетические ресурсы образовались из останков животных и растений, которые существовали миллионы лет назад, под действием давления и чрезвычайно высокой температуры в земной коре.

Средневековому человеку показалось бы волшебством, если бы перед его глазами кто-нибудь добыл свет из угля или привел бы в движение машину с помощью нефти. Но это волшебство заключается только в том, чтобы сделать возможным накопление энергии и переход ее из одной формы в другую. В наше время этот процесс стал для всех настолько обычным, что мало кто задумывается об энергетической проблеме и о тех ресурсах, которые мы для этого берем. С того времени, когда человечество начало разгадывать секреты энергии, оно старается добыть энергию с наименьшими затратами. Идеальным вариантом было бы изобрести машину времени, так называемую «перпертум мобиле», которая производила бы энергию сама, получая ее из ничего. Но, к сожалению, такой вечный двигатель, который бы решил все проблемы энергетических ресурсов, создать невозможно. Общее количество энергии всегда остается неизменным, ее нельзя создать, можно лишь освободить накопившуюся энергию и превратить в другую: световую, электрическую, тепловую, физическую, химическую и т. д.

Вода как источник энергии

Человек может использовать мощную силу воды, на некоторых этапах вмешиваться в природный кругооборот воды, чтобы таким образом добывать энергию. Сегодня на гидроэлектростанциях производится электроэнергия, которую можно накапливать или же сразу потреблять по назначению.

Невероятной силы морские волны ежесекундно разбиваются о многочисленные побережья, мощная энергия их выполняет свою работу. Но человечество до сих пор не в силах использовать силу морских волн для производства энергии, хотя существует бессчетное количество теоретических моделей и идей их реализации для решения энергетической проблемы. С недавнего времени, а именно после аварии на Чернобыльской АЭС правительства многих морских государств всерьез заинтересовались этим безопасным источником энергии, до этого проводились испытания в основном в области атомной энергетики.

Уголь

Все виды угля - это результат процесса, длившегося миллионы лет, во время которого останки разнообразной растительности разложились и превратились под действием высокого давления в торф, затем - в уголь. Эти залежи на протяжении миллионов лет все глубже и глубже проникали в земную кору, покрываясь сверху новыми пластами. Например, слой торфа в 50 метров уплотнялся до пласта угля в 3 метра. Первыми, еще в I столетии нашей эры, с помощью угля отапливали свои жилища римляне. Исследователи считают, что торф использовался для отопления еще в доисторический период. И только в XVI веке уголь стали использовать в Европе как топливо.

Уголь и нефть по своему происхождению и химическому составу принадлежат к одной группе. На самом деле из угля так же, как из нефти, можно получить бензин. Этот способ был разработан в Германии во время Второй мировой войны, когда нефти для производства бензина не хватало. Этот метод заключается в том, что в процессе сжигания уголь размельчается и проходит определенные химические процессы, в результате чего получается отличное топливо.

Нефть

Как и другие виды ископаемого топлива, которое человечество сжигает для получения тепла и электроэнергии, нефть имеет чрезвычайно почтенный возраст. Самые старые месторождения нефти были образованы 600 млн лет назад. Нефть заполняла все пустоты и щели земной коры, создавая громадные месторождения. В наше время они активно отыскиваются, бурятся скважины и добываются огромные запасы этих залежей.

Из нефти производят все больше и больше веществ, потребляемых человечеством. Бензин и дизельное топливо - не единственные продукты, потребляемые человеком. Нефть является сырьем для производства лекарств, искусственных тканей, ядов, минеральных удобрений, косметики, пластмассы. Мы даже не подозреваем, насколько человечество зависимо от этих топливно-энергетических ресурсов. Не зря самые богатые страны в мире - это страны-добытчики и производители нефти. В наше время везде господствует нефть. Ни одна другая форма по мощности пока не может заменить нефть как источник энергии.

Природный газ

Газ, используемый для отопления, приготовления еды или производства электроэнергии, - это в большинстве случаев пропан, бутан или природный газ. Он был обнаружен во время бурения первых нефтяных скважин почти случайно. Сегодня природный газ обеспечивает пятую часть мировой потребности в энергии.

Природный газ, который сгорает во время приготовления еды, выделяет энергии в два раза больше, чем электрический ток, производимый тепловыми электростанциями. Природный газ, так же как и уголь, является ископаемым топливом, но по своему происхождению ближе к нефти. Именно поэтому он добывается вместе с нефтью или в виде самостоятельных газовых образований. Проще всего добывать природный газ из месторождений, которые находятся под землей, как на Ближнем Востоке или в Сибири. Безопасность при его выработке обеспечивается системой соединительных труб и вентилей, с помощью которых регулируют давление, так как газовые месторождения постоянно находятся под огромным давлением.

Главные европейские месторождения газа находятся в Италии, Франции и Голландии, а также в Северном море, возле побережья Великобритании и Норвегии. Кроме этого, Россия поставляет сибирский газ разветвленной системой газопроводов в страны Центральной Европы. Россия - главный поставщик газа, из Сибири поступает третья часть всех используемых в мире запасов газа.

Энергия из атомов

Атомную энергию человечество научилось получать на электростанциях путем расщепления ядра атома урана. Именно этот элемент имеет нестабильное ядро и легче всего расщепляется под действием нейтронов. В результате распада ядра освобождаются новые нейтроны, которые, в свою очередь, расщепляют другие ядра атомов. Этот процесс превращается в цепную реакцию и освобождает огромное количество энергии, которая используется для превращения воды в пар, приводящий в движение турбину и электрогенератор. К сожалению, этот способ решения энергетической проблемы небезопасный, вместе с энергией атомных ядер происходит радиоактивное излучение, опасное для всех живых организмов. Поэтому защита с помощью специальных кожухов на таких электростанциях должна быть максимальной.

Мягкие энергии

По мнению ученых, решение энергетической проблемы в будущем за мягкими альтернативными видами энергии. Существуют такие формы, как энергия ветра, биоэнергия и солнечная энергия. Они не тратят полезные ископаемые и не вредят окружающей среде. Еще их называют возобновляемыми источниками энергии. До тех пор, пока существует жизнь на Земле, сила ветра, биоэнергия и солнечная энергия неисчерпаемы, а ископаемые источники в виде угля, газа и нефти когда-нибудь исчезнут.

Биоэнергия

Биоэнергия - энергия, которая вырабатывается из растений. Для животных и людей растения являются самым важным источником энергии и пищевым продуктом. Растения получают запас энергии непосредственно от Солнца, древесина - носитель возобновляемой биоэнергии. Но потребности нашего индустриального общества настолько велики, что вся древесина на планете сможет удовлетворить только небольшую ее часть, не решая проблемы энергетической. Во многих странах древесина выступает основным источником энергии. Неконтролируемая вырубка ведет к уменьшению количества деревьев, поскольку часто для их насаждений не хватает денег. В таком случае этот источник постепенно становится невозобновляемым, что станет одной из причин энергетической проблемы.

Альтернативным и перспективным методом получения энергии считается производство биогаза. Он формируется из разрушенных веществ животного и растительного мира при отсутствии контакта с воздухом. Сельские хозяйства, где собирается в виде отходов много биомассы, могут использовать для производства метана специальные установки биогаза. Работа таких установок не вредит окружающей среде, а их использование не требует никаких затрат. Решение энергетической и сырьевой проблемы именно в таких альтернативных источниках. Но, конечно, сначала они должны быть построены, а первые опыты всегда связаны с большими расходами. Интересный способ расходовать меньше бензин, например, нашли в Бразилии. Они производят биоспирт - жидкость, получаемую из брожения сахарного тростника и кукурузы. Этот алкоголь добавляется к обычному бензину. Таким образом, страна становится менее зависимой от импорта бензина.

Еще один пример использования биоэнергии представляют собой калифорнийские побережья. На морских фермах выращивается одна из разновидностей морских водорослей, которые ежедневно вырастают на полметра. Их также перерабатывают для получения бензина, а другие виды водорослей используют как сырье на тепловых электростанциях, уменьшая энергетическую и сырьевую проблему.

Энергия ветра

Ветер - один из традиционных источников энергии. Еще в VII веке до н. э. в Персии использовали ветряки, а в 1920 году в США впервые ветряк использовали для производства электроэнергии. Еще спустя 10 лет в Австрии и Баварии были построены ветряные установки, которые обеспечивали собственным электричеством целые местности.

Современные силовые установки производят электроэнергию. С помощью силы ветра движутся электрогенераторы, которые питают электросеть или же накапливают энергию в аккумуляторных батареях. По мнению специалистов, использование силы ветра имеет большое будущее, если человечество отдаст предпочтение развитию технологии альтернативной энергетики, а не атомной энергетике и использованию нефти как источника энергии.

Солнечная энергия

С точки зрения производства энергии, мы можем рассматривать Солнце как разновидность атомного реактора чрезвычайной мощности. Только миниатюрная частичка достигает Земли, но даже она дает возможность жизни. Можно ли превращать солнечную энергию непосредственно в электрическую? Да, это вполне возможно с помощью солнечных батарей. Уже сегодня везде, где ярко светит Солнце и потребности в электроэнергии небольшие, получают энергию непосредственно от Солнца. Солнечные батареи - это пластины, которые имеют два чрезвычайно тонких слоя. Один слой состоит из кремния, второй - из кремния и бора. Вместе с солнечным светом, который попадает на солнечную батарею, на ее внешний слой проникают фотоны - мельчайшие частички света, излучаемые Солнцем. Они приводят в движение электроны, перенося их во второй слой и, таким образом, вызывают электрическое напряжение. Перемещаемые электроны попадают в накопитель тока, затем - в электрические проводники. Таким образом, например, станции на солнечных батареях уже решают энергетическую проблему Дальнего Востока.

Солнечные батареи постоянно совершенствуются. Пока они еще очень дорогие, но надеемся, что в недалеком будущем они станут достаточно эффективными и дешевыми и смогут решить глобальную энергетическую проблему, удовлетворить значительную часть потребностей человечества в электроэнергии. Такие солнечные фермы сейчас находятся в нежилых краях из-за чрезвычайной жары. Перспективы использования солнечной энергии огромные, по мнению специалистов, если техника для производства водорода будет дальше развиваться, то накопленную в пустынных районах солнечную энергию можно будет доставлять в виде водорода к странам-потребителям.

Зачем беречь энергетические запасы?

Залежи нефти, угля и природного газа, образованные нашей планетой на протяжении миллионов лет, человечество тратит за несколько лет. Когда мы бездумно тратим эти запасы с увеличением добычи энергоносителей, мы обворовываем своих потомков.

Этим мы нарушаем баланс энергии на Земле, ведь соотношение полученной энергии и отдаваемой обратно в космос должно быть уравновешенным. Если же человечество уничтожает и сжигает энергетические запасы, то образуются газы, которые препятствуют возвращению в космос излишка солнечной энергии. Как результат, возникает глобальная энергетическая проблема - наша планета становится теплее, возникает явление, называемое парниковым эффектом. Парниковый эффект может настолько изменить мировой климат, что произойдет расширение пустынь, образуются опустошающие смерчи, растает лед на полюсах, значительно поднимется уровень моря, множество побережий будут залиты водой.

Кроме того, время истощения энергетических ресурсов уже пришло. Ученые бьют тревогу, доказывая, что энергетических ископаемых запасов хватит на несколько десятков лет, затем потребление энергии снизится и благосостояние человечества тоже. Решение проблемы в быстром переходе общества к разумному потреблению энергетических запасов и разработке новых альтернативных и безопасных методов добычи энергии.

На пороге XXI века человек все чаще стал задумываться о том, что станет основой его существования в новой эре. Люди прошли путь от первого костра до атомных электростанций, однако энергия была и остается главной составляющей жизни человека.

Существуют «традиционные» виды альтернативной энергии: энергия Солнца и ветра, морских волн и горячих источников, приливов и отливов. На основе этих природных ресурсов были созданы электростанции: ветряные, приливные, геотермальные, солнечные.

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество - энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную роль в мировом балансе, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. С течением времени - гигантские цифры, огромные темпы роста! И все равно энергии будет мало - потребности в ней растут еще быстрее.

Потому ныне перед всеми учеными мира стоит проблема нахождения и разработки новых альтернативных источников энергии. В данной работе будут рассмотрена классификация альтернативных источников энергии, способы нахождения новых видов топлива и опыт России и других зарубежных стран в изобретении и использовании энергосберегающих ресурсов.

1. Альтернативные источники энергии

К альтернативным источникам энергии относят энергию Солнца, земли, ветра, воздуха, атомную и биоэнергию.

Солнечная энергия

Солнце - центр нашей системы из 8 планет (не считая мелких, таких как Плутон, Церера и др.), является первичным и главным источником энергии в нашей системе планет. Являясь большим термоядерным реактором, выделяющим громадное количество энергии, оно согревает Землю, приводит в движение и верхние слои атмосферы, океанские течения и реки. Под воздействием солнечных лучей и благодаря фотосинтезу, на нашей планете вырастает около одного квадриллиона тонн растений, дающих в свою очередь жизнь, 10 триллионам тонн животных организмов. Благодаря совместному труду Солнца, воды и воздуха, за миллионы лет, на 3емле накоплены запасы углеводородов - угля, нефти, газа и пр., которые мы сейчас активно расходуем.

Для удовлетворения потребностей человечества в энергоресурсах, на сегодняшний день, требуется сжечь около десяти миллиардов тонн углеводородного топлива в год. Считается, что на 3емле имеется около шести триллионов тонн различных углеводородов. Если взять энергию, поставляемую на нашу планету Солнцем за год, и перевести в углеводородное топливо, которое мы сжигаем, то получим около ста триллионов тонн, что в десять тысяч раз превышает необходимый нам объем энергоресурсов.

Для обеспечения потребностей человечества энергией на несколько веков хватит и сотой доли той энергии, которая доходит от Солнца до Земли за один год, и если мы сможем взять этот процент, то это бы решило многие проблемы с генерацией энергии на многие века вперед. Как взять этот столь необходимый для нас процент солнечной энергии в теории понятно, дело остается за более совершенными технологиями преобразования энергий. Среди возобновляемых источников энергии, солнечная радиация по объемам ресурсов, распространенности, доступности и экологической чистоте наиболее перспективна.

В начале 20 века многие ученые мира, всерьез задумывались об использовании солнечной энергии. Наш соотечественник, основатель теоретической космонавтики К.Э. Циолковский, во второй части своей книги: "Исследования мировых пространств реактивными приборами" писал следующее: "Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два млрд. раз большую, чем та, которую человечество имеет на Земле".

Альберт Эйнштейн основатель всемирно известной теории относительности, в 1921 году был удостоен Нобелевской премии за объяснение законов внешнего фотоэффекта. В 1905 году была опубликована его работа, в которой, опираясь на гипотезу Планка, Эйнштейн описал как именно и в каких количествах кванты света выбивают из металла электроны. Применить данную гипотезу на практике впервые удалось советским физикам в 30-е годы под руководством знаменитого академика А.Ф. Иоффе.

В Физикотехническом институте, были разработаны и созданы первые сернисто-талиевые фотоэлементы, правда, КПД этих элементов не дотягивал до 1%.

Позднее в 1954 году американскими учеными Пирсоном, Фуллерром и Чапином был запатентован первый элемент с КПД порядка 6%. В 70-х годах КПД солнечных фотоэлементов приближался к 10%, но их производство было довольно дорого и экономически неоправданно, посему использование солнечных батарей в основном ограничивалось космонавтикой. Для производства элементов, требовался кремний (Si, силициум) высокой отчистки и особого качества, в сравнении со стоимостью сжигаемых углеводородов, переработка кремния виделась дорогой и неоправданной, хотя данный элемент таблицы Менделеева в изобилии располагается на пляжах в виде песка (SiO 2). Вследствие чего, исследования по разработке технологий в области солнечной энергетики, были урезаны в финансировании или и вовсе свернуты.

К началу 21 века КПД солнечных батарей удалось увеличить до 20%. Несложно догадаться, почему человечество отступило от разработки солнечной энергии. В середине прошлого века наша цивилизация разгадала тайну ядерной энергии, и все силы науки были брошены на поиски новых способов обогащения урана и создание более совершенных ядерных реакторов, в ущерб технологиям для выработки кремния и разработки новых видов солнечных элементов.

Тем не менее, все это выглядит немного странно, учитывая тот факт, что более прогрессивные технологии получения силициума давно существуют. Еще в 1974 году фирмой Siemens (Германия) была разработана технология получения кремния с помощью карботермического цикла, что понизило себестоимость процесса на порядок. Однако для данной технологии требуется уже не обычный песок, а так называемые особо чистые кварцы, запасы которых в нашей стране самые крупные, что, несомненно, выгодно для России, ведь имеющихся запасов хватит на всех.

Солнечные батареи как форма использования солнечной энергии

Солнце - мощнейший источник энергии в нашей солнечной системе. Давление в его внутренней части порядка 100 миллиардов атмосфер, а температура достигает 16 миллионов градусов. До Земли доходит лишь одна двухмиллиардная доля всего излучения. Но даже эта малая часть превосходит по мощности все земные источники энергии (в том числе и энергию земного ядра). Использование солнечной энергии сегодня стало распространенным явлением, а солнечные батареи обретают все большую популярность.
Первые солнечные батареи были использованы в 1957 году при покорении космоса. Их установили на спутник для преобразования солнечной энергии в электрическую, которая была необходима для работы спутника. При создании солнечных батарей используют полупроводниковые материалы, как правило, кремний.

Принцип работы солнечных элементов построен на фотоэлектрическом эффекте - преобразовании энергии света в электричество. Когда солнечная энергия попадает на неоднородный полупроводник (неоднородность может достигаться различными путями, например легированием), в нем создаются неравновесные носители заряда обоих типов. При подключении данной системы к внешней цепи можно «собирать» электроны, соответственно создавая электрический ток. Есть много эффектов, которые отрицательно сказываются на величине получаемого тока (например, частичное отражение солнечных лучей или их рассеяние), поэтому исследовательская работа по созданию наиболее подходящего материала очень актуальна на сегодняшний день.
Солнечные батареи - это большие по площади модули, которые собираются из отдельных элементов. Эти элементы - это обычно небольшие пластины (размеры которых в среднем 130×130мм), с припаянными к ним контактами.
Этот вид энергии абсолютно экологичен, так как нет никаких ядовитых и опасных выбросов в атмосферу, они не загрязняют воду или почву, у них даже отсутствует опасное излучение. К тому же это весьма надежный источник альтернативной энергии - по расчетам ученых солнце будет светить еще несколько миллионов лет. К тому же, энергия солнца абсолютна бесплатна. Другое дело, конечно, что создание самого солнечного элемента является довольно дорогой процедурой.

Но у данного вопроса есть и обратная сторона. Притом, что энергия солнца бесплатна и огромна, она непостоянна. Работа солнечных батарей сильно зависит от погоды. В пасмурную погоду количество вырабатываемого электричества падает в разы, а ночью и вовсе прекращается. Пытаясь как-то справиться с этим, ученые разработали всевозможные аккумуляторы. Но при нагрузке таких огромных солнечных станций, аккумуляторы не выдерживают больше часа. Поэтому использование солнечных батарей возможно только совместно со стабильным источником электроэнергии.
Солнечные батареи распространены в тропических и субтропических регионах. Количество солнечных дней в странах этих регионов максимально, следовательно, максимально и количество вырабатываемого электричества.

Энергию солнца могут использовать не только крупные компании, но и владельцы частных домов. Например в Германии солнечные батареи устанавливаются на крыши домов, что позволяет хозяевам экономить порядка 50% всех затрат на электроэнергию. Учитывая, что стоимость электроэнергии в этой стране довольно высока. В солнечные дни количество перерабатываемой энергии может превышать необходимое. В той же Германии государство скупает эти излишки у частных лиц и перепродает скупленную электроэнергию в ночное время по более низкой цене, чем стимулирует интерес населения к установке солнечных батарей.
В самых безоблачных регионах строятся целые гелиоэлектростанции (ГЕЭС). Принцип их работы несколько отличается от солнечных батарей. Эти солнечные установки концентрируют солнечную энергию и используют ее для приведения в действие турбин, тепловых машин и т.д. В качестве примера можно привести солнечную башню в Испании. Множество зеркал направляют солнечные лучи на ее верхнюю часть, разогревая находящуюся там воду до 250 градусов. Это выгодно по многим параметрам.
Еще одним преимуществом солнечных батарей можно считать их мобильность. Небольшой элемент в условиях яркого солнечного освещения может вырабатывать электроэнергию достаточную, например, для подзарядки сотового телефона или маломощного ноутбука.

Энергия земли

Планета Земля - самый удивительный и загадочный объект, будоражащий умы людей на протяжении многих веков. Она дает жизнь, делясь теплом, водой, пищей, и отбирает ее, обрушиваясь ураганами, землетрясениями, потопами или извержениями вулканов. Для выживания человеку необходима энергия и он берет ее, разворовывая недра нашей планеты: добывает тоннами нефть, уголь, вырубает леса и т.д. Несмотря на то, что наша планета очень богата, ее запасы все же небезграничны. Эта проблема тревожит умы глав государств и научных работников уже не первый год - постоянно ищутся все новые источники альтернативной энергии.

Одним из возможных решений этой насущной проблемы стала геотермальная энергетика, то есть использование внутреннего тепла земли и превращение его в электроэнергию.

Приблизительная температура земного ядра 5000°С, а давление там достигает 361 ГПа. Такие невероятно высокие значения достигаются вследствие радиоактивности ядра. Оно разогревает близлежащие пласты породы, создавая тем самым горячие потоки, размером с континенты. Они медленно поднимаются из глубины земных недр, заставляя двигаться континенты, провоцируя извержения вулканов и землетрясения.

При удалении от ядра температура постоянно уменьшается, но жар при извержении вулканов говорит о том, что даже «низкая» для ядра температура, просто колоссальна. Тепловая энергия земли огромна, но загвоздка в том, что современные технологии пока не позволяют использовать ее если не полностью, то хотя бы наполовину.

В некотором смысле земное ядро можно считать вечным двигателем: есть сильное давление (а оно благодаря гравитации будет всегда), значит есть высокая температура и атомные реакции. Но пока не создано ни технологий, ни материалов, которые смогли бы выдержать столь жесткие условия и позволить добраться до ядра. Сегодня мы можем использовать тепло приповерхностных слоев, температура которых несравнима с тысячами градусов, но вполне достаточна для выгодного ее использования.
Существует несколько способов использования геотермальной энергии. Например, можно использовать горячие подземные воды для обогрева жилых домов, всевозможных предприятий или учреждений. Но больший интерес вызывает использование тепловой энергии для преобразования ее в электроэнергию.

Геотермальную энергию различают по форме, в которой она вырывается из-под земли:

  • «Сухой пар» . Это пар, вырывающийся из-под земли без капелек воды и примесей. Его очень удобно использовать для вращения турбин, вырабатывающих электрическую энергию. А конденсированная вода, как правило, остается довольно чистой и ее можно возвращать обратно в землю или даже в ближайшие водоемы.
  • «Влажный пар» . Это смесь воды и пара. В данном случае задача несколько усложняется, поскольку приходится сначала отделить пар от воды, а лишь потом его использовать. Капли воды могут повредить турбины.
  • «Система с бинарным циклом» . Из-под земли вырывается просто горячая вода. Используя эту воду, изобутан переводят в газообразное состояние. А затем используют изобутановый пар для вращения турбин. Эту воду можно использовать для непосредственного обогрева помещений - централизованное теплоснабжение.

Недостаток таких установок в том, что они привязаны географически к районам геотермальной активности, которые расположены совсем неравномерно по поверхности земли. В России источники геотермальной энергии расположены на Камчатке, Курильских островах и Сахалине - экономически плохо развитых регионах. Поскольку в них слабо развита инфраструктура, они малонаселенны, обладают сложным рельефом местности и высокой сейсмической активностью, эти районы являются экономически невыгодными для создания там тепловых станций. Но ведь это не может стать ограничением тепловой энергии нашей планеты.
В середине 19 века британский физик Уильям Томсон заложил фундамент технологии теплового насоса. Принцип его работы можно объяснить схематично в виде трех замкнутых контуров.

Во внешнем контуре циркулирует так называемый теплоноситель, который поглощает тепло окружающей среды. Обычно этот контур представляет собой трубопровод, который максимально приближен к источнику внешнего тепла (грунт, река, море и т.д.) с циркулирующим антифризом (незамерзающей жидкостью).

Во втором контуре циркулирует вещество, которое испаряется благодаря теплу вещества первого контура, и конденсируется, отдавая тепло веществу последнего третьего контура. Во втором контуре в качестве испаряемого вещества используется хладагент (вещество с низкой температурой испарения). В этот же контур встроены конденсатор, испаритель и устройства, меняющие давление хладагента. Третий контур и является нагревательным элементом, который передает тепло помещениям.
Имеется еще один проект, преобразующий тепло земной коры в электроэнергию. Этот проект разработали ученые одной из национальных лабораторий министерства энергетики США. Технология заключается в бурении двух неглубоких скважин глубиной около четырех километров, которые доходят до твердых скальных пород. Далее скалы дробятся при помощи подземных взрывов, увеличивая глубину скважины. Одна из скважин наполняется водой, где она нагревается до 176 градусов. Притом, что температура сравнительно небольшая, ее вполне хватает для обогрева помещений и выработки электроэнергии. Затем, вода поднимается по другой скважине (ее стараются располагать на значительном удалении от первой) и поступает на электростанцию.

Преимуществом данного метода стала его независимость от геотермальной активности местности - он пригоден для установки почти везде.
Уже достаточно давно умы ученых будоражит еще один вид энергии Земли - энергия магнитного поля. На сегодняшний день не создано ни одного реально существующего проекта. Но огромный потенциал магнитного поля постоянно подталкивает на изобретение все более новых и более хитрых приборов. Одним из которых является электромобиль Тесла. Принцип работы этого прибора так и остался для всех загадкой.

Никола Тесла заменил бензиновый двигатель обычного автомобиля стандартным электромотором переменного тока мощностью в 80л.с., у которого отсутствовали видимые внешние источники питания. Автомобиль мог развивать скорость до 150 км/ч. По заявлению самого ученого машина работала благодаря «эфиру, который вокруг нас!». Современные исследователи полагают, что физик использовал в своем генераторе энергию магнитного поля нашей планеты. Он мог настраивать свою высокочастотную схему переменного тока на резонансную частоту 7,5 Гц. Но это всего лишь догадки.
Такие альтернативные источники энергии, как тепловая или магнитная, вскоре станут не фантазиями или гипотезами, а необходимостью. Ну а благодаря своим преимуществам: высокой экологичности, независимости от местоположения и погодных или климатических условий, низким уровнем затрат на производство и, конечно же, неисчерпаемости, эти источники энергетики становится весьма перспективными.

Энергия ветра Начало формы

Воздух - это ветер, один из альтернативных источников энергии на нашей планете.

Современность определяет ветер, как поток воздуха, движущийся вдоль земной поверхности со скоростью свыше 0,6 м/с. Он возникает из-за неравномерного распределения атмосферного давления, которое постоянно меняется, смещая огромные пласты воздуха из зоны высокого давления в зону низкого. В древности же обо всех этих хитрых определениях не имелось ни единого представления, но это не помешало древним людям научиться использовать энергию ветра в своих целях.

Еще до нашей эры умелые египтяне переплывали Нил на первых парусных лодках. В итоге это стало первым шагом в развитии парусного дела. Не менее изобретательными оказались и викинги. Их боевые парусные корабли, подгоняемые сильными порывами ветра, превосходили по скорости и легкости все корабли Западной Европы, наводя страх и ужас на местное население. Создание первых ветряных мельниц в 12 веке привело к рождению первого печеного хлеба, без которого невозможно представить себе ни один современный стол.

Использование ветряной энергии нашло большое применение в Голландии. Эта страна часто затапливается, поскольку находится ниже уровня моря, и использование энергии ветра в 14 веке для откачки воды с полей позволило ей войти в список самых богатых стран на то время. Впоследствии другие страны Европы стали использовать такой альтернативный источник энергии для достижения обратного эффекта - подачи воды на засушливые поля.

К 19 веку ветряки стали уже привычным делом на людей. К 1900 году в одной только Дании насчитывалось больше двух тысяч ветряных мельниц. А создание первой ветряной мельницы, преобразующей ветер в электроэнергию, стало началом нового витка в истории современной энергетики - ветроэнергетики.

Ветроэнергетика стала весьма перспективной, потому что ветер является возобновляемым источником энергии. Развитие данной отрасли энергетики идет очень активно: к 2008 году общая установленная мощность всех ветрогенераторов составила 120 гигаватт. Поскольку мощность ветрогенератора зависит от площади лопасти генератора, имеется тенденция к увеличению их размеров, и эти сооружения мельницами не назовешь - теперь это турбины.

Большое распространение данный вид энергетики получил в США. К середине 20 века там было построено несколько сотен тысяч турбин. С течением времени ветряные фермы стали весьма распространенным явлением в ветряной Калифорнии, да и по всей территории штатов, а после выхода в свет закона об обязательной скупке коммунальными предприятиями лишней электроэнергии, полученной из ветра, у рядовых граждан, эта область стала привлекательной и материально.

Важным является экологический аспект ветроэнергетики. По данным Global Wind Energy Council к 2050 году эта отрасль поможет уменьшить ежегодные выбросы углекислого газа (СО 2) на 1,5 млрд. тонн. Турбины занимают совсем небольшую площадь ветряной фермы (порядка 1%), следовательно, остальная площадь открыта для сельского хозяйства. Это имеет большое значение в небольших густонаселенных странах.
Значение ветроэнергетики возросло в 1973 году, когда ОПЕК ввело эмбарго на добычу нефти и ежегодно стало отслеживать ее количество. Стоимость на нефть возросла в разы, заставив государства изучать и развивать альтернативные источники энергии. С каждым годом стоимость технологии ветряной электродобычи уменьшается, увеличивая долю ветроэнергетики в общем объёме. На сегодняшний день этот вклад по всему миру составляет всего 2%, но с каждой минутой эта цифра растет.

Энергия воды

Вода - источник жизни на земле. Это одно из самых уникальных и удивительных явлений на нашей планете, обладающее множеством уникальных свойств, использование которых может быть очень выгодно и полезно для человека.

Энергия воды - один из первых источников энергии, который люди научились использовать в своих целях. Так принцип работы первых речных мельниц прост и в то же время гениален: движущийся поток воды вращает колесо, преобразуя кинетическую энергию воды в механическую работу колеса. По сути, все современные гидроэлектростанции работают аналогично, только с одним важным дополнением: далее механическая энергия колеса преобразуется в электрическую.

Энергию воды грубо можно разделить на три типа по ее виду, в котором она преобразовывается:

1. Энергия приливов и отливов . Явление отлива очень интересно и долгое время оно никак не могло быть объяснено. Большие массивные (и разумеется близкие к Земле) космические объекты, такие как Луна или Солнце, действием своей гравитации приводят к неравномерному распределению воды в океане, создавая «горбы» из воды. Из-за вращения земли начинается движение этих «горбов» и их перемещение к берегам. Но из-за того же вращения Земли, положение океана относительно Луны изменяется, уменьшая тем самым действие гравитации.

Во время прилива заполняются специальные резервуары, располагающиеся на береговой линии. Резервуары образуются благодаря дамбам. Во время отлива вода начинает свое обратное движение, которое и используется для вращения турбин и преобразования энергии. Важно, чтобы разница высот во время прилива и отлива была как можно больше, иначе подобная станция просто не сможет себя оправдывать. Поэтому приливные электростанции создаются, как правило, в узких местах, где высота приливов достигает хотя бы 10м. Например, приливная станция во Франции в устье реки Ранс.

Но такие станции имеют и свои минусы: создание дамбы приводит к увеличению амплитуды приливов со стороны океана, а это влечет за собой затопление суши соленой водой. Как следствие - изменение флоры и фауны биологической системы, причем не в самую лучшую сторону.
2. Энергия морских волн. Несмотря на то, что природа этой энергии весьма схожа с энергией приливов и отливов, ее все же принято выделять в отдельную ветвь. Данный вид энергии обладает довольно высокой удельной мощностью (приблизительная мощность волнения океанов достигает 15 кВт/м). Если высота волны будет около двух метров, то это значение может увеличиться до 80 кВт/м. Перевести всю энергию волнения в электрическую не удается, но все же коэффициент преобразования довольно высок - 85%.
На сегодняшний день использование энергии морских волн не особо распространено из-за ряда сложностей, возникающих при создании установок. Пока эта сфера находится только на стадии экспериментальных исследований.
3. Гидроэлектростанции . Этот вид энергии стал доступным для человека благодаря совместной «работе» трех стихий: воды, воздуха и, конечно же, солнца. Солнце испаряет с поверхности озер, морей и океанов воду, образуя облака. Ветер перемещает газообразную воду к возвышенным областям, где она конденсируется и, выпадая в виде осадков, начинает стекать обратно к своим первоисточникам. На пути этих потоков ставятся гидроэлектростанции, которые перехватывают энергию падающей воды и преобразуют ее в электрическую. Мощность, вырабатываемая станцией, зависит от высоты падения воды, поэтому на ГЭС стали создаваться дамбы. Они так же позволяют регулировать величину потока. Создание такого огромного сооружения стоит очень дорого, но ГЭС полностью себя окупает благодаря неисчерпаемости используемого ресурса и свободного доступа к нему.
У данного типа энергии, по аналогии с остальными, имеются как плюсы, так и минусы. Так же как в случае использования энергии приливов, создание ГЭС приводит к затоплению большой площади и нанесению непоправимого ущерба местной фауне. Но даже с учетом этого обстоятельства можно говорить о высокой экологичности ГЭС: они наносят только локальный ущерб, не загрязняя атмосферу Земли. В попытках уменьшить ущерб, наносимый станциями, разрабатываются все более новые методы их работы, постоянно совершенствуется конструкция самих турбин.

Одним из предложенных методов стало «накачивание» аккумуляторов. Вода, прошедшая через турбины не утекает дальше, а накапливается в больших резервуарах. Когда нагрузка на ГЭС становится минимальной, за счет энергии атомной или тепловой станции сохраненная вода перекачивается обратно вверх и все повторяется. Этот метод выигрывает как по экологическим, так и по экономическим показателям.
Еще одну интересную область использования водной энергии придумали эксперты Комиссии по атомной энергетике в Гренобле, Франция. Они предлагают использовать энергию падающего дождя. Каждая падающая капля, попадая на пьезокерамический элемент, воздействует на него физически, что приводит к возникновению электрического потенциала. Далее электрический заряд видоизменяется (так же как в микрофонах электрический сигнал преобразуется в колебания).

Благодаря многообразию своих форм, вода обладает поистине громадным энергетическим потенциалом. На сегодняшний день гидроэнергетика уже весьма развита и составляет 25% от мирового производства электроэнергии, а, учитывая темпы ее развития можно смело говорить, что она является весьма перспективным направлением.

Атомная энергия Начало формы

В конце 20 века проблема поиска альтернативных источников энергии стала весьма актуальной. Несмотря на то, что наша планета поистине богата природными ископаемыми, такими как нефть, уголь, древесина и т.д., все эти богатства исчерпаемые. Поэтому приходится искать все более новые и совершенные источники энергии.

На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии.

Ядерная теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. Все началось еще в 1896 году, когда А.Беккерель зарегистрировал невидимые лучи, которые испускала урановая руда, и которые обладали большой проникающей способностью. В дальнейшем это явление получило название радиоактивности.

История развития ядерной энергии содержит в себе несколько десятков выдающихся фамилий, в том числе и советских физиков. Завершающим этапом развития можно назвать 1939 год - когда Ю.Б.Харитон и Я.Б.Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Далее развитие ядерной энергетики шло семимильными шагами. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1кг урана, можно сравнить с энергией, которая получается при сжигании 2500000кг каменного угля.

В период Второй мировой войны все исследования были перенаправлены в военную область. Первым примером ядерной энергии, который человек смог продемонстрировать всему миру, стала атомная бомба, потом водородная.

Лишь спустя годы научное сообщество обратило свое внимание на более мирные области, где применение ядерной энергии могло бы стать действительно полезным. Так начался рассвет самой молодой области энергетики. Стали появляться атомные электростанции (АЭС), причем первая в мире АЭС была построена в городе Обнинске Калужской области.

На сегодняшний день насчитывается несколько сотен атомных электростанций по всему миру. Развитие ядерной энергетики происходило невероятно стремительно. Меньше чем за 100 лет она смогла достигнуть сверхвысокого уровня технологического развития. То количество энергии, которое выделяется при делении ядер урана или плутония, несравнимо велико - это сделало возможным создание крупных атомных электростанций промышленного типа.

Эту энергию получают в результате цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон - элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло.
Данный вид энергии производят не только на АЭС. Он так же используется на атомных подводных лодках и атомных ледоколах.
Для нормального функционирования АЭС необходимо топливо. Как правило, это уран. Этот элемент имеет широкое распространение в природе, но при этом труднодоступен. В природе не существует залежей урана (как например нефти), он как бы «размазан» по всей земной коре. Самые богатые урановые руды, которые встречаются очень редко, содержат до 10% чистого урана. Уран обычно содержится в урансодержащих минералах в качестве изоморфно замещающего элемента. Но при всем это общее количество урана на планете грандиозно велико. Возможно, в ближайшем будущем новейшие технологии позволят увеличить процент добычи урана.

Столь мощный источник энергии, а значит и силы, не может не вызывать опасений. Постоянно ведутся споры о его надежности и безопасности. Трудно оценить какой ущерб наносит атомная энергетика окружающей среде. Однако если бы завтра на нашей планете закончились все запасы источников традиционной энергии, то ядерная энергетика, пожалуй, стала бы единственной областью, которая реально смогла бы заменить ее. Нельзя отрицать ее преимущества, но и не стоит забывать о возможных последствиях.

Биоэнергия

С понятием биоэнергии связанно немало путаницы.

По определению биоэнергетика - это отрасль альтернативной энергетики, то есть энергетики, которая считается возобновимой. Количество потребляемой энергии всем человечеством в год - просто огромно. Поэтому встает вопрос о том, сможет ли хоть какой-нибудь ресурс восстанавливаться соответственно скорости его потребления.

Биоэнергия - это совокупность целого спектра альтернативных источников энергии. Этот спектр объединяют одним общим понятием биомасса. По сути это результат жизнедеятельности всех живых организмов нашей планеты.

Ежегодно прирост биомассы на планете достигает 130 млрд. тонн сухого вещества. Это соответствует 660 000 ТВтч в год, притом, что мировой общественности требуется всего лишь 15000 ТВтч в год.
Сегодня более 99% автовладельцев используют топливо, производимое из нефти. И с каждым днем количество автомобилей на дорогах растет. Нефтяное топливо едва ли можно считать возобновляемым. Количество нефти с каждым годом неумолимо уменьшается, что приводит к повышению цены на нее. А поскольку экономика многих стран только развивается, то, несмотря на повышение цен, спрос на нефть все равно будет расти. Замкнутый круг, выходом из которого может стать биотопливо.
Долгое время биотопливо считалось неконкурентоспособным, потому что уступало ископаемому топливу и по производимой мощности и по сложности внедрения. Но постоянно развивающиеся технологии помогли решить эти проблемы. Биотопливо бывает разных типов:

  • жидким : метанол, этанол, биодизель;
  • газообразным: водород, сжиженный нефтяной газ (пропанобутановые фракции);
  • твердым : дрова, уголь, солома.

Недавно созданное жидкое биотопливо отличается своей экологичностью и доступностью, но помимо этого имеет и еще одно важное преимущество. Для перехода на жидкое биотопливо не понадобиться существенных изменений в структуре двигателей и оборудования. Само биотопливо представляет собой сырьё, получаемое при переработке, как правило, семян рапса, сои, стеблей сахарного тростника или кукурузы. Развивается еще много направлений получения органического топлива (например, из целлюлозы).

Природный газ, водород и подобное сырье нельзя отнести к возобновляемым источникам, поэтому их можно считать в определенной степени полумерой при переходе на биотопливо. К тому же, немало трудностей связанно с внедрением такой технологии. Например, водородный двигатель мог бы стать очень перспективным представителем своего «семейства», но для нормального функционирования автомобиля было бы необходимо закрепить целую цистерну на крыше авто, что не очень удобно. А в сжатом состоянии водород очень взрывоопасен.

На помощь пришли новейшие изобретения в области нанотехнологий - разрабатывается проект по созданию нанокапсул для хранения водорода и других взрывоопасных газов. Каждая нанокапсула (модифицированная нанотрубка) будет наполняться определенным количеством молекул газа и «закупориваться» фуллереном, что позволит разделить газ на порции, сделав его безопасным.

Гораздо проще обстоит ситуация с биодизельным топливом. Биодизельное топливо - это растительное масло переэтерифицированное метанолом (иногда может использоваться этанол или изопропиловый спирт). Реакция обычно проходит при нормальном давлении и температуре 60 °С. Растительные масла получают из самых различных представителей флоры (более 20 наименований), но лидером остается Рапс. Это маслянистое растение, которое легко выращивается в сельскохозяйственных условиях.
Но на этом преимущества биоэнергетики не заканчиваются. Помимо того, что она отвечает на актуальные вопросы современности о поиске альтернативных источников энергии и ее экологичности, важно отметить и материальный аспект.

Импорт нефти сильно сказывается на бюджете страны, учитывая постоянное повышение цены на нее. А биотопливо наоборот дешевеет с каждым днем. Отсюда можно утверждать, что экономия при переходе на биотопливо может оказаться весьма существенной.

В феврале 2006 года Евросоюзом был принят документ «Стратегия для биотоплива», который описывает рыночный, законодательный и исследовательский потенциал по увеличению использования биотоплива. Пусть сегодня процентная доля биотоплива в мировой топливной энергетике не достигает даже одного процента, с таким количеством преимуществ ситуация должна сильно измениться уже в ближайшее время.

2. Проблемы энергосбережения в России и за рубежом, пути их решения

Поистине эпохальное для России событие по итогам 2009 года это принятие Федерального закона «Об энергосбережении и повышении энергетической эффективности». За последние несколько лет его проект выдержал не одну редакцию, а бурные дебаты вокруг отдельных положений этого документа приобрели общенациональный масштаб, выплеснувшись за пределы профессионального сообщества и близких к законодательным органам кругов.

Энергорасточительность российских граждан не случайна. В первую очередь она обязана историческим и климатическим факторам. Другим весомым показателем является неразвитость законодательства по сравнению с обширнейшим законодательным опытом развитых стран. В России законотворчество в области энергосбережения только началось, инициативу на комиссии по модернизации и технологическому развитию экономики 30 сентября 2009 года проявил президент Дмитрий Медведев. А 11 ноября 2009 года Государственная дума приняла уже в третьем чтении федеральный закон «Об энергосбережении и повышении энергетической эффективности».

По своему действию он охватит всех и каждого, со времен принятия Налогового кодекса Госдума не рассматривала законопроект, столь масштабно затрагивающий быт буквально каждого гражданина и производство каждой компании. С точки зрения государства это крайне важные шаги. Конечная цель мероприятия - экономия топлива.

Энергопотребление в России достигает почти 1млрд тонн условного топлива. По оценке Минэнерго России, при снижении энергоемкости до европейского уровня наше потребление снизилось бы до 650 млн. тонн условного топлива.

Рассмотрим в качестве важнейших энергосберегающих направлений энергосберегающие лампочки и пассивные дома.

Энергосберегающие лампочки

Обычная лампа накаливания, которая повсеместно используется более сотни лет для освещения, хорошо греет и плохо светит. Ее световая отдача (то есть количество излучаемых люменов на единицу потребляемой мощности) крайне невысока. Аргумент в пользу альтернативных ламп, по большому счету, один - они дают столько же света при меньшем потреблении энергии и более длительном сроке службы.

Однако позиции Дмитрия Медведева по идее замены ламп накаливания на энергоэффективные получила весьма неоднозначное отражение в последующих действиях чиновниках.

С 1 января 2011 года запрещаются приобретение для государственных и муниципальных нужд любых ламп накаливания и оборот ламп накаливания от 100 Вт и выше. Далее законопроект декларирует, что с 1 января 2013 года может быть введен запрет для 75-ваттных лампочек, а с 1 января 2014 года и 25-ваттных. Шедевр «лампы 75 и 25 ватт, может, будут запрещены, а может, нет» не позволяет предприятиям даже в минимальном приближении сформировать свои инвестиционные программы. Нарастить импорт компактных люминесцентных ламп можно в одночасье, а для организации производства нужно как-никак иметь точный план на некоторый, хоть сколько-нибудь приличный срок. Можно с уверенностью прогнозировать, что при таком подходе российскому бизнесу будет крайне сложно инвестировать в новое производство.

Принятый в данной редакции закон приведет к очевидной лихорадке на рынке осветительных приборов, росту импорта дешевых компактных люминесцентных ламп и распространению мнимых фобий, связанных с вредностью и ядовитостью этих ламп.

Принятый закон требует от всех нас тотального перехода на приборный учет производимых, передаваемых и потребляемых энергетических ресурсов. Поскольку прежде чем, что-то сэкономить, надо знать, сколько ты потребил.

Два года отводится населению на тотальное оснащение счетчиками своей собственности - квартир, офисов, складов, заводских помещений. Оплата установки и замены счетчика возлагается на потребителей. Закон «Об энергосбережении» прямо затронет карман граждан. Помимо лампочек придется потратиться как минимум на счетчики энергии, газа, воды и тепла.

Учет электрической энергии, природного газа, тепла и воды технически и экономически решаемая проблема, имеющая наработанные стандартные решения. Однако парадоксальным образом существующая нормативная база сейчас препятствует населению переходить на учет ресурсов по счетчику. Особенно ярко это проявляется в учете воды. Устанавливая счетчик сейчас, гражданин вместо экономии затрат может получить возросшие расходы. До момента, когда все до единого жителя дома сделают то же самое, установивший счетчик будет умножать показания своего прибора на коэффициент, зависящий от числа прописанных в доме, потерь воды, расхода на общедомовые нужды, установленных нормативов потребления воды для жителей, не имеющих счетчиков, а также с учетом фактического потребления.

Чтобы избавиться от этой дикости, когда расходы во многом зависят не от потребления, а от числа прописанных в доме соседей и частоты их водных процедур, мало принять закон об энергосбережении и энергоэффективности. Потребуется тщательно и детально переписать постановление правительства РФ от 23 мая 2006 года №307 «О порядке предоставления коммунальных услуг гражданам».

Следующим шагом по снижению потребления тепла, воды и электрической энергии является перечень мероприятий, которые граждане должны провести сами. Пока списка в природе не существует. Сам перечень и принципы его внедрения установит правительство РФ. Утверждать же его будут региональные власти. Каждые пять лет требования к энергетической эффективности зданий, а, следовательно, и к серьезности проводимых мероприятий будут ужесточаться.

Данные мероприятия будут включать не только замену лампочек. Наверно, будет что-то по замене советских окон на современные стеклопакеты. По большому счету, это все, что доступно отдельно взятому гражданину в отдельно взятой квартире или офисе. Возможны мероприятия, связанные с утеплением и энергосбережением всего дома. В идеальном варианте грамотная управляющая компания сможет заключить энергосервисный договор, который позволит жильцам оплатить утепление фасада в рассрочку, за счет экономии от снижения потребления тепла. Вместо типовых технических решений и финансово-правовых механизмов улучшения действующего жилого фонда закон надеется на живое творчество масс и жэков.

К сожалению, законопроект практически не замечает и принципиальной разницы между новым строительством и уже построенными зданиями. В области нового строительства вполне может сработать «лампочкин» метод запрета, например, на холодный бетон и поощрения теплого пористого кирпича. Среди пяти главных принципов создания теплого и светлого дома числятся в основном те, что используются строителями с древнейших времен: хорошая теплоизоляция стен, крыши и фундамента, правильная ориентация окон по сторонам света и снижение теплопотерь через окна.

Работающий, эффективный закон об энергосбережении должен состоять из множества конструкций, которые вызовут интерес повышать энергоэффективность у сотни и тысячи рыночных субъектов. В российском законопроекте есть лишь их зачатки. Перечислим имеющиеся в законе стимулирующие меры.

Предприятие теперь сможет получить инвестиционный налоговый кредит (отсрочку уплаты налога на прибыль или регионального налога на период от одного года до пяти лет), если повысит энергетическую эффективность производства товаров, выполнения работ, оказания услуг.

В отношении объектов генерации представлены более строгие критерии. Создание объекта электрической или тепловой генерации с КПД более 57% или использующего возобновляемые источники энергии дает основание на налоговый кредит до 30% стоимости приобретаемого оборудования. В этот пока еще короткий перечень правительство России обязано внести другие объекты и технологии, имеющие высокую энергетическую эффективность.

Наше отставание в энергоэффективности означает, что мы должны, не теряя времени на поиск пути, использовать опыт других стран. В поддержку плана действий «группы восьми», куда входит и Россия, и по поручению лидеров стран «восьмерки» Международное энергетическое агентство (МЭА) подготовила специальный 586-страничный доклад «Перспективы энергетических технологий: сценарии и стратегии развития до 2050 года». МЭА уверено, что первостепенное значение для решения задач безопасной и экологически чистой энергетики, изменения климата и устойчивого развития имеет энергоэффективность. В своем докладе агентство привело множество требуемых для этого технологий, уже разработанных или близких к коммерциализации. Так, новые строения могут быть на 70% более эффективными по экономии энергии, новые системы освещения - на 30-60% более экономичными, тепловые потери через современные окна - в три раза меньше (все это в сравнении с типичными западными технологиями, а не типичными российскими).

Не утруждая себя более полной интеграцией, освоением международного опыта и более детальной проработкой соответствующих механизмов в российском законодательном поле, авторы законопроекта, видимо, понадеялись на действенность штрафов. Теперь за энергорасточительность уполномоченный орган сможет в массовом порядке налагать штрафы на граждан и организации.

По подсчетам некоторых аналитиков, 40% потребляемой в России энергии можно "высвободить" за счет простой экономии. Данный факт означает, что в нашей стране ежегодно тратится впустую, почти половина всей производимой энергии, и не зря нам присваивают статус, одной из самых энергорасточительных стран в мире. Количество впустую сожженной и потерянной энергии сравнимо с объемом всей экспортируемой из России нефти и нефтепродуктов. Каждый день, мы забываем или ленимся гасить свои осветительные приборы, а в масштабах всей страны это уже миллионы, если не миллиарды ламп.

Тем не менее, популярность использования энергосберегающих ламп в нашей стране набирает обороты, спрос на данный товар растет с каждым днем. Интерес к энергосберегающим светилам, вызван не только мировыми тенденциями к энергосбережению, но, и как показывает практика, это и в самом деле, очень практичное решение для освещения жилья.

Чем же отличаются энергосберегающие лампы, от традиционных ламп накаливания и является ли экономия электроэнергии единственной отличной характеристикой? Давайте попробуем разобраться в этих вопросах. Для начала рассмотрим, как устроена энергосберегающая лампа.

Энергосберегающая лампа состоит из 3 основных компонентов: цоколя, электронного блока, люминесцентной лампы.

Цоколь - предназначен для подключения лампы к осветительным прибором.

Электронный блок - (ЭПРА: электронный пускорегулирующий аппарат) обеспечивает запуск и дальнейшее поддержание процесса свечения люминесцентной лампы. Также Электронный блок преобразует поступающее напряжение 220В в напряжение, необходимое для работы люминесцентной лампы.

Люминесцентная лампа - собственно сама светящаяся часть лампы, наполнена инертным газом (аргоном) и парами ртути. Внутренние стенки лампы покрыты люминофорным покрытием.

Теперь ознакомимся с характеристиками энергосберегающих ламп.
Энергосберегающие лампы еще называют - Компактные Люминесцентные Лампы или сокращенно - КЛЛ.

Принцип работы у них аналогичен люминесцентным лампам: трубка в форме спирали или система дуговых трубок, наполненная инертным газом (аргоном или ксеноном) и парами ртути. Внутренние стенки лампы покрыты люминофором. Под действием высокого напряжения в лампе происходит движение электронов, они сталкиваются с атомами ртути, при этом образуется ультрафиолетовое излучение, которое, проходя сквозь люминофор, создает видимое нашему глазу свечение.

Исполнение ламп бывает различным, обычно их производят в виде трубок скрученных в спираль, но также компактные образцы, представлены в традиционных формах груши, свечи, шара или цилиндра. В последних образцах уже отсутствует электронный блок (ЭПРА), вернее он есть, просто инженеры умудрились всунуть его в цоколь.

Световой поток и мощность

Мощность указывается в ваттах, зачастую указан и эквивалент по мощности обычной лампочки, выдающей равное с энергосберегающей количества света. Например, если на энергосберегающей лампе написано 8W, то светить она будет как 40W лампочка накаливания. Ниже приведены среднестатистические значения мощности и соответствующего светового потока:
. 5W (25W) - 250 Lm;

  • 8W (40W) - 400 Lm;
  • 12W (60W) - 630 Lm;
  • 15W (75W) - 900 Lm;
  • 20W (100W) - 1200 Lm;
  • 24W (120W) - 1500 Lm;
  • 30W - 150W - 1900 Lm;

Температура света

Данный параметр будет не совсем правильно применять к люминесцентным лампам, так как он берётся из температуры нагретой нити в лампе накаливания, при этом температура измеряется в кельвинах (К). Температура нити накала традиционной лампочки равна 2700 К или 2427 С, при этом лампочка светит жёлтым светом.
Производители люминесцентных ламп придерживаются таких температурных диапазонов:

  • 2700 К - тёплый белый, соответствует свету от обычной лампочки накаливания;
  • 3300-3500 К - белый, не распространенный тип КЛЛ.
  • 4000-4200 К - холодный белый, лампа светит с слабым голубым оттенком. Мощность таких ламп рекомендуется выбирать больше, так как с такой температурой света маломощная лампа светит тускло.
  • 6000-6500К - дневной. Свечение ламп соответствует люминесцентным трубкам большой мощности.

Срок службы

Некоторые производители весьма не дешевых энергосберегающих ламп дают гарантии, на 12000-15000 часов работы их продукции. Лампы средней ценовой категории работают до 6000-10000 часов. Самый бюджетный вариант имеет срок службы 3000-4000 часов, что порой не соответствует действительности.

Коэффициент цветопередачи

Немаловажный коэффициент, чем он выше - тем лучше. Минимальное необходимое значение R=82. Если коэффициент ниже, чем 82, то создаётся эффект затуманенности, тени от такого света получаются не чёткие, оттенки предметов белого цвета - резкие с зелёноватыми или синими бликами. Глядя на лампочку с низким R, ловишь «зайчиков» в глазах, как от взгляда на сварку или на солнце.

Недостатки
К недостаткам можно отнести экологическую частоту, мы все прекрасно знаем что пары ртути - это яд, поэтому разбивать энергосберегающие лампы крайне не рекомендуется. Также нужно отметить, что бракованные компактные люминесцентные лампы - не редкость. Как правило, брак часто встречается в бюджетной категории товаров из-за не совершенства технологии производства, и большой процент дешёвых ламп умирает или начинает гореть тускло после первых 1000 часов работы.
Рекомендации
Для продления жизни энергосберегающих ламп, существуют определённые рекомендации по использованию, которые помогут продлить срок их службы. Как и для обычных ламп накаливания, на сроке жизни энергосберегающих сказываются частые включения и выключения, рекомендуется выключать лампочку не менее, чем после 5-10 минут работы.
Нельзя использовать энергосберегающие лампы с устройствами плавного старта или защитными блоками от скачков напряжения, которые используют с обычными лампами накаливания.

Также рекомендуется использовать энергосберегающие лампы с интегрированной системой плавного старта, так как такой вид включения продлит срок службы, на несколько тысяч часов. Первых пару минут лампа будет разогреваться, гореть не на полную мощность.
Экономия
Несмотря на изначально высокую цену, КЛЛ становиться более экономным и практичным решением. Произведем небольшой расчет перехода с обычных ламп накаливания на энергосберегающие:
Средний срок службы лампы накаливания около 1000 часов, аналогичной энергосберегающей - 6000 часов. Стоимость лампы накаливания - 15 рублей, энергосберегающей лампы - 120 рублей. Мощности ламп - 100 W и 20 W соответственно. Стоимость электроэнергии возьмём 2 рубля за 1 кВ/ч. За 6000 часов работы вам нужно 6 обычных ламп по 15 рублей, что равно 90 руб. За 6000 часов работы 6 лампочек по 100W сожгут 600 кВ/ч. энергии по 2 рубля, а это равно 1200 рублей. Итого получаем 90+1200=1290 рублей.

Энергосберегающая лампа стоит 120 руб. мощность составляет 20W, получается, что за 6000 часов работы она израсходует 120 кВ/ч на 240 рублей. Итого получаем 120+240=360 рублей.

Затраты получаются в 3,5 раза ниже. На практике этот показатель может быть как больше, так и меньше. А выводы делайте сами.

Пассивные дома

В Европе одним из основных трендов в развитии жилищного строительства становится создание пассивных домов. Основные их преимущества - минимальные затраты на отопление и здоровый микроклимат.

Пассивные дома - это достаточно новый стандарт для жилых строений. Благодаря утеплению и герметизации оболочки здания, затраты на отопление в нем ничтожно малы и нет нужды в привычных системах отопления. Тема пассивных домов так популярна сегодня в Германии и Австрии, что можно говорить о начале тихой домостроительной революции. За десятилетие там построено более 16 тыс. таких домов, причем в последние три-четыре года объемы растут экспоненциально. Требования к эффективности зданий в Германии постоянно ужесточаются, все чаще можно услышать, что через несколько лет пассивные дома могут стать обязательным общегерманским стандартом. Другие дома строить не будут вовсе.

В основе концепции пассивного дома очень простой эффект - автономное пространство, откуда не выходит тепло, можно отопить всего одной свечой. По аналогии: для дома-термоса, не имеющего тепловых потерь, даже в морозы будет достаточно тепла человека (в сутки человеческое тело выделяет 100 кВт тепловой энергии), солнечной энергии и энергии, выделяемой электроприборами.

В середине 1980-х годов германский инженер-физик Вольфанг Файст сделал математические расчеты дома-термоса, который не надо было бы обогревать. Главный результат расчетов в том, что такой пассивный дом оказался не математическим феноменом, а вполне реальной вещью. В частности, для эффективного утепления здания не нужны толстые кирпичные стены - достаточно слоя утеплителя менее полуметра.

Для проверки расчетов Файста в 1991 году в Дармштадте был построен первый пассивный дом. Детальное изучение подтвердило: здание действительно практически не потребляет тепла. Экспериментальный дом оказался всего на 25% дороже обычного здания, что вполне приемлемо для первого образца. В середине 1980-х независимо от Файста подобные расчеты сделал и российский физик Юрий Лапин. Однако отечественное градостроительное начальство посчитало, что такого не может быть в принципе, и идею даже проверять не стали.

Уже в первом пассивном здании доктора Файста были сформулированы пять основных принципов пассивного дома. Принцип первый - хорошая теплоизоляция всех частей здания. Для утепления стен, кровли и фундамента в климате центральной части Германии достаточно высокоэффективных утеплителей толщиной 30-40 сантиметров, что по тепловым свойствам эквивалентно кирпичной кладке толщиной шесть-восемь метров.

Второй - использование трех камерных стеклопакетов с низким показателем теплопередачи. Третий - особое внимание уделяется тонкой работе с так называемыми мостиками холода (стыки элементов, металлические части, углы здания), через которые тепло активно уходит. Например, металлические детали заменяются пластиковыми. Четвертый - проводится герметизация здания, и оно действительно становится термосом, не выпускающим воздух.

Правда, тут возникает проблема: люди дышат, а значит, необходима постоянная подача свежего воздуха. В советской практике предполагалось, что вентиляция помещений происходит естественно - через форточки и щели в окнах-дверях. Понятно, что для герметичного пассивного дома такой подход неприемлем, так как зимой здание будет терять тепло. Выход был найден в системе искусственной вентиляции с рекуператорами-теплообменниками. Это и есть пятый принцип возведения пассивного дома.

Свежий воздух подается в постройку по трубе, проходит через теплообменник, где забирает часть тепла у выходящего воздуха, имеющего комнатную температуру. В пассивных домах уровень рекуперации достигает 75%, а значит, выходящий воздух передает значительную часть энергии входящему. Зимой входящий воздух, если это необходимо, дополнительно подогревается. То есть система отопления в зданиях все-таки есть, но она воздушная и потребляющая мало энергии.

Результат: необходимость в отоплении пространства резко снижается. Критерием пассивного дома является потребление тепловой энергии - 15 кВт на один квадратный метр в год. Это в десять раз меньше, чем у рядовых германских зданий 1950-1980-х годов постройки и в 10-15 раз меньше, чем у советских домов, возведенных в 1970-х. Наконец, пассивные европейские дома потребляют в пять-семь раз меньше тепловой энергии, чем современные российские здания. Можно посчитать и по-другому: для отопления 30-метровой комнаты пассивного дома достаточно энергии 30 свечей.

В первом пассивном доме был еще один элемент, от которого впоследствии отказались. В нем попытались использовать энергию земли. Воздухозаборник ставился на некотором расстоянии от здания, и свежий воздух сначала шел по подземной трубе. Проходя под землей, где даже в сильные морозы температура остается плюсовой, воздух прогревался. Система работала, но после расчетов и экспериментов от данного элемента решили отказаться - слишком дорого.

Отказ этот весьма показателен. Суть пассивного дома в его экономичности. Немцы постоянно проверяли идеи на практике, различные способы экономии и производства энергии сравнивались по их цене за 1 кВт - в результате были приняты те принципы технологии «пассивный дом», которые дают максимальный финансовый эффект. Так, расчеты Института пассивных домов показали, что эффективнее вкладывать деньги в экономию энергии, чем в ее производство, что в Германии при строительстве дома с нуля выгоднее инвестировать средства в системы пассивного дома, чем, к примеру, в установку солнечных батарей.

Именно соображения экономии заставили немцев остановиться на базовом показателе затрат на отопление в 15 кВт на один метр в год. В принципе этот показатель можно снизить, но расчеты Института пассивных домов продемонстрировали, что именно при 15 кВт чисто математически достигается экстремум по показателю «эффект/затраты». Если пытаться снизить до нуля затраты на тепло, резко возрастают затраты на строительство и сложность системы.

Сегодня в мире строится немало экодомов, в том числе и довольно экзотических. В них применяются необычные материалы, солнечные батареи, ветряки и так далее. Есть стандарт домов так называемого нулевого потребления, когда здания полностью автономны, обеспечивают себя энергией. На фоне красивых картинок и ярких концептов пассивные дома могут показаться суховатыми. Но простота пассивных домов продуманная: из системы недрогнувшей рукой вычеркнуты все недостаточно практичные элементы. При этом система открытая, хозяин, естественно, может добавить в свой дом любой дополнительный элемент.

И именно этой эффективностью вызван успех пассивных домов на рынке. Если еще десять лет назад в год строились десятки таких зданий, то в последние три-пять лет, ежегодно возводятся уже тысячи домов. Львиная доля пассивных домов строится в Германии и Австрии. В Вене уже 20% новостроек возводится именно так. Начато строительство огромного муниципального района на 200 тыс. жилых «пассивных» единиц. В последние годы все больше пассивных домов появляется в Дании и Франции, созданы прототипы в Испании, Турции.

Для энергоэффективных домов разрабатываются специальные материалы: например, стекла с переменной управляемой прозрачностью и черепицу с фотоэлементами. Ведутся исследовательские проекты по адаптации системы "пассивный дом" для стран с различным климатом.

По пассивному дому можно безошибочно определять стороны света. На юг выходят большие панорамные окна. Окна на север намного меньше. Впрочем, использовать дом как компас можно только с учетом климата страны. Большие окна на юг отражают положение в Германии, где хочется зацепить больше солнечной энергии. Энергоэффективные дома в Южной Европе, наоборот, будут ориентироваться окнами на север, чтобы защититься от лишнего тепла.

Окна - это всегда предмет компромисса. С одной стороны, через них в комнаты попадает свет и солнечная энергия, а с другой - в них велики теплопотери, которые можно радикально снизить, только вставив очень дорогие стеклопакеты. В каждом случае размер окон и их параметры по тепло- и светопередаче рассчитывают архитекторы исходя из бюджета стройки.

В целом по архитектуре пассивные дома практически не отличаются от обычных, все интересное внутри. В таком доме имеется отдельная комната для инженерного оборудования, обычно в подвале. Множество труб с воздухом и водой запаковано либо в резиновые кожухи, либо в изоляцию с фольгой - немцы решительно борются с теплопотерями. В угол ставится рекуператор размером чуть больше холодильника. В трубу с входящим воздухом монтируются места для нескольких фильтров - как в автомобиле. Фильтры периодически меняются, что гарантирует чистый воздух в доме.

В каждом пассивном доме на стене висит небольшая коробочка - пульт управления климатом. Чаще всего там два регулятора: первый задает температуру, второй регулирует скорость подачи чистого воздуха. Так что на коробочке несколько положений типа «один дома» (не менее 300л воздуха в час), «вдвоем», «вечеринка».

По себестоимости пассивный дом несколько дороже обычного. В таком доме нет котла и системы отопления - это удешевляющий момент; зато есть расходы на дополнительное утепление, герметизацию, рекуперацию и так далее. Однако, 20 лет развития технологии не прошли даром: стоимость пассивного дома резко снизилась. Если первый пассивный дом доктора Файста был дороже обычного здания на 25%, то сегодня превышение - всего 5-10%. Впрочем, ожидать дальнейшего радикального снижения себестоимости вряд ли стоит. Немецкие архитекторы пассивных домов бьются за доли процента, экономя на длине труб или разыгрывая правильную ориентацию здания по сторонам света.

Дополнительные вложения в систему «пассивный дом» окупаются в среднем через семь-десять лет за счет пониженных платежей за тепло.

Выводы. Увеличивающееся загрязнение окружающей среды, нарушение теплового баланса атмосферы постепенно приводят к глобальным изменениям климата. Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к использованию нетрадиционных, альтернативных источников энергии. Они экологичны и возобновляемы, основой их служит энергия Солнца и Земли, воды и воздуха.

Неоспорима роль энергии в поддержании и дальней-шем развитии цивилизации. Сегодня активно проводятся исследования всех возможных восстанавливаемых источников энергии. В некоторых случаях результаты даже выглядят весьма оптимистично и позволяют надеяться на определенные

Изменения.

Энергия - не только одно из чаще всего обсуждаемых сегодня понятий; помимо своего основного физического содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты.
Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных видов природного топлива (нефти, угля, газа и др.) исчерпаемы. Конечны также и запасы ядерного топлива - урана и тория.

Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

Список литературы

  1. Баланчевадзе В. И., Барановский А. И. Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. - М.: Энергоатомиздат, 1990.
  2. Бернер М., Рябов Е. Замени лампочку - помоги Родине // Эксперт, 21-31 декабря 2009. - №49-50.
  3. Информация об энергосбережении и повышении энергетической эффективности: проблемы, пути решения, передовой опыт // Энергосбережение и водоподготовка, 2010. - №1(63).
  4. Кириллин В. А. Энергетика. Главные проблемы: в вопросах и ответах. - М.: Знание, 1990.
  5. Нетрадиционные источники энергии. - М.: Знание, 1982.
  6. Щукин А. Энергия свечей, человека и земли // Эксперт, 5-11 октября 2009. - №38.
  7. Энергетические ресурсы мира. Под ред. П.С.Непорожнего, В.И. Попкова. - М.: Энергоатомиздат, 1995.
  8. http://www.energy-source.ru/
  9. http://www.energija.ru/
  10. http://solar-battery.narod.ru/
  11. http://dom-en.ru/

Ознакомление с основными направлениями и перспективами развития альтернативной энергетики. Определение экономических и экологических преимуществ использования ветровой, солнечной, геотермальной, космической, водородной, сероводородной энергии, биотоплива.

Введение

Основные направления альтернативной энергетики

Альтернативный источник энергии

Классификация источников

Ветроэнергетика

Гелиоэнергетика

Геотермальная энергетика

Космическая энергетика

Водородная энергетика и сероводородная энергетика

Биотопливо

Распределённое производство энергии

Перспективы

Введение

В теплоэнергетике в настоящее время более 180 тысяч малых и мелких котельных индивидуальных, отопительных, с общей теплопроизводительностью 680 млн. Гкал в год и расходом топлива 140 млн. т.у.т. или 30% от расхода топлива, затраченного на производство тепла.

Действующие теплоустановки возобновляемой энергетики (2008 год):

Солнечные системы теплоснабжения с площадью солнечных коллекторов до 100 тыс. кв.м;

Более 3000 тепловых насосов единичной мощностью от 4 кВт до 8 МВт;

Около 20 биоэнергетических установок по переработке отходов животноводства и птицеводства с выработкой биогаза;

Геотермальное теплоснабжение в объеме 3 млн. Гкал в год;

8 мусоросжигающих заводов;

4 станции по переработке городских сточных вод;

Несколько котельных на отходах лесопереработки.

Принцип получения тепла, ничем не отличается от принипа получения электрической энергии, просто процесс короче на один шаг.

Суммарная доля малой и возобновляемой энергетики составляет около 160 млн. т.у.т. в год или 17% от внутреннего потребления в 1995 г. (948 млн. т.у.т.).

Что объединяет малую и возобновляемую энергетику? Их объединяет, несмотря на принципиально разные ресурсы (невозобновляемые и возобновляемые) и различное влияние на окружающую среду:

1) предназначение для непосредственного удовлетворения бытовых и производственных нужд человека и небольших коллективов в электрической и тепловой энергии;

2) ориентация на местные виды ресурсов;

3) возможность комбинированного использования для достижения экономичного и надежного энергоснабжения.

Во имя чего следует развивать эти отрасли энергетики? Энергетическая стратегия России дает ответ на этот вопрос, объявляя высшим приоритетом энергообеспечение населения. Другими словами речь идет о надежном обеспечении энергией, светом, теплом, чистой водой, топливом для приготовления пищи, почтовой, телеграфной и телефонной связью людей, проживающих в районах автономного (децентрализованного) энергоснабжения и энергодефицитных районах. А это касается 20-30 млн. человек. Эти цифры получены следующим образом: взглянем на карту России. Зоны децентрализованного энергоснабжения и неэлектрифицированные зоны составляют около 70% территории. Неэлектрифицированные поселения встречаются и в зонах централизованного энергоснабжения.

Однако не все социальные проблемы решаются энергетическими стратегиями. И ни одна техническая проблема не решится этой стратегией. Т.е. существует ряд проблем (технических, экономических, социальных) и мифов замедляющих процесс развития альтернативной энергетики.

Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района.

Основные направления альтернативной энергетики

1. ветроэнергетика

Автономные ветрогенераторы

2. гелиоэнергетика

Солнечный водонагреватель

Солнечный коллектор

Фотоэлектрические элементы

3. альтернативная гидроэнергетика

приливные электростанции

волновые электростанции

мини и микро ГЭС (устанавливаются в основном на малых реках)

водопадные электростанции

4. геотермальная энергетика

Тепловые и электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)

Грунтовые теплообменники (принцип отбора тепла от грунта по средством теплообмена)

5. космическая энергетика

Получение электроэнергии в фотоэлектрических элементах, расположенных на орбите Земли. Электроэнергия будет передаваться на землю в форме микроволнового излучения.

6. водородная энергетика и сероводородная энергетика

Водородные двигатели (для получения механической энергии)

Топливные элементы (для получения электричества)

7. биотопливо

Получение биодизеля

Получение метана и синтез-газа

Получение биогаза

8. распределённое производство энергии

Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.

Альтернативный источник энергии

Альтернативный источник энергии — способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.

Классификация источников

Тип источников

Преобразуют в энергию

Ветряные

движение воздушных масс

Геотермальные

тепло планеты

Солнечные

электромагнитное излучение солнца

Гидроэнергетические

падение воды

Биотопливные

теплоту сгорания возобновляемого топлива (например, спирта)

Ветроэнергетика

Отрасль энергетики, специализирующаяся на использовании энергии ветра — кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2008 года общая установленная мощность всех ветрогенераторов составила 120 гигаватт, увеличившись вшестеро с 2000 года.

Экономия топлива

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра.

экономические проблемы

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередач и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляюмую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередач оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.

Экологические аспекты ветроэнергетики.

1. Выбросы в атмосферу

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота.

2. Шум

Ветряные энергетические установки производят две разновидности шума:

механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)

аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

3. Низкочастотные вибрации

Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.

Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

4. Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлет льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.

Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

5. Визуальное воздействие

Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

6. Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью, что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход.

7. Радиопомехи

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала. Чем крупнее ветроустановка, тем большие помехи она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

8. Вред, наносимый животным и птицам

9. Использование водных ресурсов

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Гелиоэнергетика

получение энергии от Солнца.

Имеется несколько технологий солнечной энергетики. Получение электроэнергии от лучей Солнца не даёт вредных выбросов в атмосферу, производство стандартных силиконовых батарей также причиняет мало вреда. Но производство в широких масштабах многослойных элементов с использованием таких экзотических материалов, как арсенид галлия или сульфид кадмия, сопровождается вредными выбросами.

Солнечные батареи имеют ряд преимуществ: они могут помещаться на крышах домов, вдоль шоссейных дорог, легко трансформируются, используются в отдалённых районах.

Главной причиной, сдерживающей использование солнечных батарей, является их высокая стоимость. Нынешняя стоимость солнечной электроэнергии равняется 4,5 дол. за 1 Вт мощности и, как результат, цена 1кВтчас электроэнергии в 6 раз дороже энергии, полученной традиционным путём сжигания топлива. Возможно использование солнечной энергии для отопления жилищ.

Однако в условиях нашей страны 80% энергии Солнца приходится на летний период, когда нет необходимости отапливать жильё, кроме того, солнечных дней в году недостаточно, чтобы использование солнечных батарей стало экономически целесообразно.

Гидроэнергетика

Это использование энергии естественного движения, т.е. течения, водных масс в русловых водотоках и приливных движениях. Чаще всего используется энергия падающей воды.

ГИДРОЭЛЕКТРОСТАНЦИЯ (схема)

Плотина образует водохранилище, обеспечивая постоянный напор воды. Вода входит в водоприемник и, пройдя по напорному водоводу, вращает гидротурбину, которая приводит в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределительные подстанции и затем потребителям.

Геотермальная энергетика

Производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли. Обычно относится к альтернативным источникам энергии, возобновляемым энергетическим ресурсам.

вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100°C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Классификация геотермальных вод

ь По температуре

ь По минерализации (сухой остаток)

ь По общей жесткостиочень

ь По кислотности, рН

ь По газовому составу

ь По газонасыщенности

Особенности

Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.

Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии

Возобновляемый источник энергии

Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций

Строительство ГЭС обычно более капиталоёмкое

Часто эффективные ГЭС более удалены от потребителей

Водохранилища часто занимают значительные территории

Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

мощные — вырабатывают от 25 МВТ до 250 МВт и выше;

средние — до 25 МВт;

малые гидроэлектростанции — до 5 МВт.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

высоконапорные — более 60 м;

средненапорные — от 25 м;

низконапорные — от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных - ковшовые и радиально осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных - поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины различаются некоторыми техническими характеристиками, а также камерами — железными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

Р условые и приплотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

П лотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

Д еривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида безнапорные, или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Г идроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные моменты (времена не пиковой нагрузки), агрегаты ГАЭС работают как насосы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и, соответственно, приводит в действие дополнительные турбины.

В гидроэлектрические станции, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

Основные сферы применения и достоинства новых космических энергетических систем

Космическая энергетика

Бестопливная космонавтика и освоение космического пространства.

Существует реальная возможность использования этих устройств в ионосферах иных планет и их спутников, поскольку уже установлено, что во многих околопланетных пространствах уже сконцентрирована и непрерывно восполняется от Солнца огромная не используемая до сих пор возобновляемая электроэнергия движущихся заряженных частиц природной плазмы в магнитосфере планет, например, на Марсе, Сатурне, Юпитере, Ио. Такая новая энергетика вполне реальна и такая бестопливная пилотируемая орбитальная космонавтика существенно удешевит освоение космического пространства.

Решение экологических глобальных проблем.

Применение возобновляемой энергии природного электричества и магнетизма в нуждах космонавтики и энергетики существенно улучшит глобальную экологию планеты и снизит ее влияние от космонавтики и планетарной энергетики в целом, поскольку тогда не надо будет осуществлять частые запуски ракетоносителей и сжигать сырье и топлива на планете.

Дешевая и быстродействующая всемирная космическая связь.

Бестопливная орбитальная космонавтика позволяет резко удешевить и повысить быстродействие всех систем космической связи и телекоммуникаций.

Управление погодой и многими природными планетарными явлениями.

Устранение и снижение мощности многих планетарных стихийных явлений.

Благодаря полезному использованию мизерной части непрерывно возобновляемой от Солнца энергии природных источников электроэнергии околоземного пространства становится возможным и перспективным создание новой экологически чистой бестопливной энергетики и бестопливной орбитальной космонавтики. В результате экология планеты существенно улучшится. На основе такой космической энергетики и бестопливной космонавтики произойдет революция во всех системах передачи информации. Они станут полностью беспроводными и дешевыми в эксплуатации. А именно, произойдет резкое удешевление и увеличение их быстродействия и пропускной способности, поскольку сейчас именно телефонные линии связи тормозят прогресс в системах связи. Бестопливная космическая энергетика позволит предотвращать многие природные аномальные и стихийные явления и катаклизмы. Таким образом, новая космическая энергетика и бестопливная космонавтика открывают новые горизонты прогресса человечества.

Водородная энергетика и сероводородная энергетика

Направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).

Производство водорода

В настоящее время существует множество методов промышленного производства водорода. Все цены приведены для США, 2004 год.

Паровая конверсия природного газа / метана

В настоящее время данным способом производится примерно половина всего водорода. Водяной пар при температуре 700-1000 °С смешивается с метаном под давлением в присутствии катализатора. Себестоимость процесса $2-5 за килограмм водорода. В будущем возможно снижение цены до $2-2,50, включая доставку и хранение.

Газификация угля.

Старейший способ получения водорода. Уголь нагревают с водяным паром при температуре 800-1300 °С без доступа воздуха. Первый газогенератор был построен в Великобритании в 40-х годах XIX века. Электричество будут вырабатывать топливные элементы, используя в качестве горючего водород, получающийся в процессе газификации угля.

В декабре 2007 года была определена площадка для строительства первой пилотной электростанции проекта FutureGen. В Иллинойсе будет построена электростанция мощностью 275 МВт. Общая стоимость проекта $1,2 млрд. На электростанции будет улавливаться и храниться до 90 % СО2.

Из атомной энерг ии

Использование атомной энергии для производства водорода возможно в различных процессах: химических, электролиз воды, высокотемпературный электролиз.

Себестоимость процесса $2,33 за килограмм водорода. Ведутся работы по созданию атомных электростанций следующего поколения. Исследовательская лаборатория INEEL (Idaho National Engineering Environmental Laboratory) (США) прогнозирует, что один энергоблок атомной электростанции следующего поколения будет производить ежедневно водород, эквивалентный 750 тыс. литров бензина.

Электролиз воды

H2O+энергия = 2H2+O2

Обратная реакция происходит в топливном элементе. Себестоимость процесса $6-7 за килограмм водорода при использовании электричества из промышленной сети

В будущем возможно снижение до $4 за килограмм.

$7-11 за килограмм водорода при использовании электричества, получаемого от ветрогенераторов.

В будущем возможно снижение до $3 за килограмм.

$10-30 за килограмм водорода при использовании солнечной энергии. В будущем возможно снижение до $3-4 за килограмм.

Водород из биомассы.

Водород из биомассы получается термохимическим или биохимическим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500-800 °С (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H2, CO и CH4.

Себестоимость процесса $5-7 за килограмм водорода. В будущем возможно снижение до $1,0-3,0.

В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes.

Снижение цены водорода возможно при строительстве инфраструктуры по доставке и хранению водорода. После небольших изменений водород может передаваться по существующим газопроводам природного газа.

Водород в настоящее время, в основном, применяется в технологических процессах производства бензина и для производства аммиака. США ежегодно производят около 11 миллионов тонн водорода, что достаточно для годового потребления примерно 35-40 миллионов автомобилей.

Департамент Энергетики США (DoE) прогнозирует, что стоимость водорода сравняется со стоимостью бензина к 2015 году.

Биотопливо

Это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, солома) и газообразное (биогаз, водород).

Биодизель - топливо на основе жиров животного, растительного и микробного происхождения, а также продуктов их этерификации.

Для получения биодизельного топлива используются растительные или животные жиры. Сырьём могут быть рапсовое, соевое, пальмовое, кокосовое масло, или любого другого масла-сырца, а также отходы пищевой промышленности. Разрабатываются технологии производства биодизеля из водорослей.

Биогаз - продукт сбраживания органических отходов (биомассы), представляющий смесь метана и углекислого газа. Разложение биомассы происходит под воздействием бактерий класса метаногенов.

Биоводород - водород, полученный из биомассы термохимическим, биохимическим или другим способом, например водорослями.

Экономический эффект

По оценкам Merrill Lynch прекращение производства биотоплив приведёт к росту цен на нефть и бензин на 15%.

Распределенное производство энергии

(англ. Distributed power generation) — концепция распределенных энергетических ресурсов подразумевает наличие множества потребителей, которые производят тепловую и электрическую энергию для собственных нужд, направляя их излишки в общую сеть.

В настоящее время промышленно развитые страны производят основную часть электроэнергии централизованно, на больших энергостанциях, таких как угольные электростанции, атомные электростанции, гидроэлектростанции или электростанции на природном газе. Такие электростанции имеют превосходные экономические показатели, но обычно передают электроэнергию на большие расстояния. Строительство большинства из них было обусловлено множеством экономических, экологических, географических и геологических факторов, а также требованиями безопасности и охраны окружающей среды. Например, угольные станции строятся вдали от городов для предотвращения сильного загрязнения воздуха, влияющего на жителей. Некоторые из них строятся вблизи угольных месторождений для минимизации стоимости транспортировки угля. Гидроэлектростанции должны находится в местах с достаточным энергосодержанием (перепад уровней на расход воды). Большинство энергостанций слишком далеко расположены, чтобы использовать их побочное тепло для обогрева зданий. Низкое загрязнение окружающей среды — критическое преимущество комбинированных энергостанций, работающих на природном газе. Это позволяет им находиться достаточно близко к городу для централизованного теплоснабжения и охлаждения. Другой подход — распределенное производство электроэнергии. При этом снижаются потери электроэнергии при транспортировке из-за максимального приближения электрогенераторов к потребителям электричества, вплоть до расположения их в одном здании. Такой подход также ведет к уменьшению числа и протяженности линий электропередач, которые необходимо построить. Типичное распределенное производство электроэнергии характеризуется низкими затратами на обслуживание, низким загрязнением окружающей среды и высокой эффективностью. Объединение распределенных генераторов энергии может выступать в качестве виртуальной ТЭЦ. В качестве синонима может использоваться термин «децентрализованное производство энергии», который не отражает специфической особенности — наличие общей сети обмена электро- и тепловой энергии. В рамках концепции децентрализованного производства электроэнергии возможно наличие общей сети электроэнергии и системы местных котельных, производящих исключительно тепловую энергию для нужд населенного пункта/предприятия/квартала.

Перспективы

На возобновляемые (альтернативные) источники энергии приходится всего около 1 % мировой выработки электроэнергии. Речь идет прежде всего о геотермальных электростанциях (ГеоТЭС), которые вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

· Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании,Канаде, России, Индии, Китае.

· Солнечные электростанции (СЭС) работают более чем в 30 странах.

· В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае.

· В качестве топлива в Бразилии и других странах все чаще используют этиловый cпирт.

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и грядущим топливным дефицитом в традиционной энергетике.

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП.

Вывод

Российский рынок обладает колоссальным потенциалом в области развития альтернативных видов энергетики и в будущем может стать одним из ключевых игроков на мировом рынке альтернативной энергетики.

К сожалению, в нашей стране в плане экономики не возможны многие проекты по развитию альтернативной энергетики.

Однако, анализ российского сельскохозяйственного сектора показывает, что биогазовые технологии не только экономически оправданы, но и могут создать условия для более интенсивного развития сельского хозяйства РФ, решить проблему отходов АПК и слабого развития энергетической инфраструктуры в сельских районах.

Агропромышленный комплекс России сегодня сталкивается с проблемой утилизации огромного количества отходов - чаще всего они просто вывозятся с территорий ферм и складируются. Это приводит к проблемам окисления почв, отчуждению сельскохозяйственных земель (более 2 млн га сельскохозяйственных земель заняты под хранение навоза), загрязнению грунтовых вод и выбросам в атмосферу метана - парникового газа. Если на государственном уровне ставится задача интенсивного развития сельского хозяйства с высоким уровнем эффективности и глубины переработки, эту проблему необходимо решать.